The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 94 of 56769
Back to Result List

Convergence of the frequency-magnitude distribution of global earthquakes - maybe in 200 years

  • I study the ability to estimate the tail of the frequency-magnitude distribution of global earthquakes. While power-law scaling for small earthquakes is accepted by support of data, the tail remains speculative. In a recent study, Bell et al. (2013) claim that the frequency-magnitude distribution of global earthquakes converges to a tapered Pareto distribution. I show that this finding results from data fitting errors, namely from the biased maximum likelihood estimation of the corner magnitude theta in strongly undersampled models. In particular, the estimation of theta depends solely on the few largest events in the catalog. Taking this into account, I compare various state-of-the-art models for the global frequency-magnitude distribution. After discarding undersampled models, the remaining ones, including the unbounded Gutenberg-Richter distribution, perform all equally well and are, therefore, indistinguishable. Convergence to a specific distribution, if it ever takes place, requires about 200 years homogeneous recording of globalI study the ability to estimate the tail of the frequency-magnitude distribution of global earthquakes. While power-law scaling for small earthquakes is accepted by support of data, the tail remains speculative. In a recent study, Bell et al. (2013) claim that the frequency-magnitude distribution of global earthquakes converges to a tapered Pareto distribution. I show that this finding results from data fitting errors, namely from the biased maximum likelihood estimation of the corner magnitude theta in strongly undersampled models. In particular, the estimation of theta depends solely on the few largest events in the catalog. Taking this into account, I compare various state-of-the-art models for the global frequency-magnitude distribution. After discarding undersampled models, the remaining ones, including the unbounded Gutenberg-Richter distribution, perform all equally well and are, therefore, indistinguishable. Convergence to a specific distribution, if it ever takes place, requires about 200 years homogeneous recording of global seismicity, at least.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gert ZöllerORCiDGND
DOI:https://doi.org/10.1002/grl.50779
ISSN:0094-8276
ISSN:1944-8007
Title of parent work (English):Geophysical research letters
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:statistical seismology
Volume:40
Issue:15
Number of pages:5
First page:3873
Last Page:3877
Funding institution:Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.