The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 43 of 309
Back to Result List

Conformational preferences of Si-Ph,H and Si-Ph,Me silacyclohexanes and 1,3-thiasilacyclohexanes : Additivity of conformational energies in 1,1-disubstituted heterocyclohexanes

  • The conformational equilibria of 1-phenyl-1-silacyclohexane 1, 3-phenyl-1,3-thiasilacyclohexane 2, 1-methyl-1- phenyl-1-silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane 4 have been studied for the first time by low temperature C-13 NMR spectroscopy at 103 K. Predominance of the equatorial conformer of compound 1 (Ph-eq/Ph-ax=78%:22%) is much less than in its carbon analog, phenylcyclohexane (nearly 100% of Ph-eq). And in contrast to 1-methyl-1- phenylcyclohexane, the conformers with the equatorial Ph group are predominant for compounds 3 and 4: at 103 K, Ph-eq/Ph- ax ratios are 63%:37% (3) and 68%:32% (4). As the Si-C bonds are elongated with respect to C-C bonds, the barriers to ring inversion are only between 5.2-6.0 (ax -> eq) and 5.4-6.0 (eq -> ax) kcal mol(-1). Parallel calculations at the DFT and MP2 level of theory (as well as the G2 calculations for compound 1) show qualitative agreement with the experiment. The additivity/nonadditivity of conformational energies of substituents on cyclohexane andThe conformational equilibria of 1-phenyl-1-silacyclohexane 1, 3-phenyl-1,3-thiasilacyclohexane 2, 1-methyl-1- phenyl-1-silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane 4 have been studied for the first time by low temperature C-13 NMR spectroscopy at 103 K. Predominance of the equatorial conformer of compound 1 (Ph-eq/Ph-ax=78%:22%) is much less than in its carbon analog, phenylcyclohexane (nearly 100% of Ph-eq). And in contrast to 1-methyl-1- phenylcyclohexane, the conformers with the equatorial Ph group are predominant for compounds 3 and 4: at 103 K, Ph-eq/Ph- ax ratios are 63%:37% (3) and 68%:32% (4). As the Si-C bonds are elongated with respect to C-C bonds, the barriers to ring inversion are only between 5.2-6.0 (ax -> eq) and 5.4-6.0 (eq -> ax) kcal mol(-1). Parallel calculations at the DFT and MP2 level of theory (as well as the G2 calculations for compound 1) show qualitative agreement with the experiment. The additivity/nonadditivity of conformational energies of substituents on cyclohexane and silacyclohexane derivatives is analyzed. The geminally disubstituted cyclohexanes containing a phenyl group show large deviations from additivity, whereas in 1-methyl-1-phenyl-1-silacyclohexane and 3-methyl-3-phenyl-1,3-thiasilacyclohexane the effects of the methyl and phenyl groups are almost additive. The reasons for the different conformational preferences in carbocyclic and heterocyclic compounds are analyzed using the homodesmotic reactions approach.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bagrat A. Shainyan, Erich KleinpeterORCiDGND
URL:http://www.sciencedirect.com/science/article/pii/S0040402011016620 (25.11.2013)
ISSN:0040-4020
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/25
Source:Tetrahedron. - ISSN 0040-4020. - 68 (2012), 1, S. 114 - 125
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.