The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 32 of 3536
Back to Result List

Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity

  • Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater dischargeSedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9%(n-C-23), -136 +/- 7%(n-C-25) and -131 +/- 6%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12%) and 15(-172 +/- 15%). We therefore suggest an average e value of -136 +/- 9% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bernhard AichnerORCiDGND, Sabine HiltORCiDGND, Cecile PerillonORCiDGND, Mikael Gillefalk, Dirk SachseORCiDGND
DOI:https://doi.org/10.1016/j.orggeochem.2017.07.021
ISSN:0146-6380
Title of parent work (English):Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:113
Number of pages:7
First page:10
Last Page:16
Funding institution:German Research Foundation, DFG [Ai 134/2-1]; Leibniz association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.