The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 71 of 3129
Back to Result List

Drought tolerance prediction of potato by automatic phenotyping of morphological and physiological traits

Vorhersage von Trockentoleranz in Kartoffel durch automatische Phänotypisierung morphologischer und physiologischer Eigenschaften

  • Potato is the 4th most important food crop in the world. Especially in tropical and sub-tropical potato production, drought is a yield limiting factor. Potato is sensitive to water stress. Potato yield loss under water stress could be reduced by using tolerant varieties and adjusted agronomic practices. Direct selection for yield under water-stressed conditions requires long selection cycles. Thus, identification of markers for marker-assisted selection may speed up breeding. The objective of this thesis is to identify morphological markers for drought tolerance by continuously monitoring plant growth and canopy temperature with an automatic phenotyping system. The phenotyping was performed in drought-stress experiments that were conducted in population A with 64 genotypes and population B with 21 genotypes in the screenhouse in 2015 and 2016 (population A) and in 2017 and 2018 (population B). Drought tolerance was quantified as deviation of the relative tuber starch yield from the experimental median (DRYM) and parent medianPotato is the 4th most important food crop in the world. Especially in tropical and sub-tropical potato production, drought is a yield limiting factor. Potato is sensitive to water stress. Potato yield loss under water stress could be reduced by using tolerant varieties and adjusted agronomic practices. Direct selection for yield under water-stressed conditions requires long selection cycles. Thus, identification of markers for marker-assisted selection may speed up breeding. The objective of this thesis is to identify morphological markers for drought tolerance by continuously monitoring plant growth and canopy temperature with an automatic phenotyping system. The phenotyping was performed in drought-stress experiments that were conducted in population A with 64 genotypes and population B with 21 genotypes in the screenhouse in 2015 and 2016 (population A) and in 2017 and 2018 (population B). Drought tolerance was quantified as deviation of the relative tuber starch yield from the experimental median (DRYM) and parent median (DRYMp). Relative tuber starch yield is starch yield under drought stress relative to the average starch yield of the respective cultivar under control conditions in the same experiment. The specific DRYM value was calculated based on the yield data of the same experiment or the global DRYM that was calculated from yield data derived from data combined over yeas of respective population or across multiple experiments including VALDIS and TROST experiments (2011-2016). Analysis of variance found a significant effect of genotype on DRYM indicating that the tolerance variation required for marker identification was given in both populations. Canopy growth was monitored continuously six times a day over five to ten weeks by a laser scanner system and yielded information on leaf area, plant height and leaf angle for population A and additionally on leaf inclination and light penetration depth for population B. Canopy temperature was measured 48 times a day over six to seven weeks by infrared thermometry in population B. From the continuous IRT surface temperature data set, the canopy temperature for each plant was selected by matching the time stamp of the IRT data with laser scanner data. Mean, maximum, range and growth rate values were calculated from continuous laser scanner measurements of respective canopy parameters. Among the canopy parameters, the maximum and mean values in long-term stress conditions showed better correlation with DRYM values calculated in the same experiment than growth rate and diurnal range values. Therefore, drought tolerance index prediction was done from maximum and mean values of canopy parameters. The tolerance index in specific experiment condition was linearly predicted by simple regression model from different single canopy parameters under long-term stress condition in population A (2016) and population B (2017 and 2018). Among the canopy parameters maximum light penetration depth (2017), mean leaf angle (2017, 2018, and 2016), mean leaf inclination or mean canopy temperature depression (2017 and 2018), maximum plant height (2017) were selected as tolerance predictors. However, no single parameters were sufficient to predict DRYM. Therefore, several independent parameters were integrated in a multiple regression model. In multiple regression model, specific experiment DRYM values in population A was predicted from mean leaf angle (2016). In population B, specific tolerance could be predicted from maximum light penetration depth and mean leaf inclination (2017) and mean leaf inclination (2018) or mean canopy temperature depression and mean leaf angle (2018). In data combined over season of population A, the multiple linear regression model selected maximum plant height and mean leaf angle as tolerance predictor. In Population B, mean leaf inclination was selected as tolerance predictor. However, in population A, the variation explained by the final model was too low. Furthermore, the average tolerances respective to parent median (2011-2018) across FGH plants or all plants (FGH and field) were predicted from maximum plant height (population A) and maximum plant height and mean leaf inclination (population B). Altogether, canopy parameters could be used as markers for drought tolerance. Therefore, water stress breeding in potato could be speed up through using leaf inclination, light penetration depth, plant height and canopy temperature depression as markers for drought tolerance, especially in long-term stress conditions.show moreshow less
  • Die Kartoffel ist die viertwichtigste Nahrungspflanze der Welt. Besonders in den Tropen und Subtropen ist Trockenheit ein ertragsbegrenzender Faktor für die Kartoffelproduktion. Kartoffeln sind empfindlich gegen Trockenstress. Der Ertragsverlust von Kartoffeln unter Wasserstress könnte durch die Verwendung von toleranten Sorten und angepasste Anbaupraxis verringert werden. Die direkte Selektion für Ertrag unter Trockenstressbedingungen erfordert lange Selektionszyklen. Daher kann die Identifizierung von Markern für marker-assisted Selektion die Züchtung beschleunigen. Das Ziel dieser Arbeit ist es, morphologische Marker für Trockentoleranz mit Hilfe von kontinuierlichen Messungen von Pflanzenwachstum und Bestandstemperatur mittels automatischer Phänotypisierung zu identifizieren. Die Phänotypisierung wurde in Trockenstressexperimenten durchgeführt, welche mit 64 Genotypen aus Population A und 21 Genotypen aus Population B in einem Foliengewächshaus in 2015 und 2016 (Population A) bzw. 2017 und 2018 (Population B) stattgefunden haben.Die Kartoffel ist die viertwichtigste Nahrungspflanze der Welt. Besonders in den Tropen und Subtropen ist Trockenheit ein ertragsbegrenzender Faktor für die Kartoffelproduktion. Kartoffeln sind empfindlich gegen Trockenstress. Der Ertragsverlust von Kartoffeln unter Wasserstress könnte durch die Verwendung von toleranten Sorten und angepasste Anbaupraxis verringert werden. Die direkte Selektion für Ertrag unter Trockenstressbedingungen erfordert lange Selektionszyklen. Daher kann die Identifizierung von Markern für marker-assisted Selektion die Züchtung beschleunigen. Das Ziel dieser Arbeit ist es, morphologische Marker für Trockentoleranz mit Hilfe von kontinuierlichen Messungen von Pflanzenwachstum und Bestandstemperatur mittels automatischer Phänotypisierung zu identifizieren. Die Phänotypisierung wurde in Trockenstressexperimenten durchgeführt, welche mit 64 Genotypen aus Population A und 21 Genotypen aus Population B in einem Foliengewächshaus in 2015 und 2016 (Population A) bzw. 2017 und 2018 (Population B) stattgefunden haben. Die Trockentoleranz wurde als Abweichung des relativen Stärkeertrags der Knollen vom experimentellen Median (DRYM) und dem Elternmedian (DRYMp) quantifiziert. Der relative Stärkeertrag ist der Stärkeertrag unter Trockenstress relativ zum mittleren Stärkeertrag der Sorte unter optimaler Bewässerung im gleichen Experiment. Der spezifische DRYM wurde auf der Basis der Ertragsdaten des gleichen Experiments berechnet oder der globale DRYM wurde auf der Basis der Ertragsdaten kombinierter Experimente aus mehreren Jahren für die gleiche Population oder für mehrere Experimente auch aus VALDIS und TROST (2011-2016) berechnet. Die Varianzanalyse zeigte einen signifikanten Effekt des Genotyps auf DRYM, so dass die für die Identifizierung von Markern erforderliche Toleranzvariation in beiden Populationen gegeben war. Die Bestandsentwicklung wurde mit einem Laserscanner-System kontinuierlich sechsmal täglich über fünf bis zehn Wochen gemessen und lieferte Informationen zu Blattfläche, Pflanzenhöhe und Blattwinkel für Population A sowie zusätzlich Blattneigung und Lichteinfalltiefe für Population B. Die Oberflächentemperatur wurde 48mal täglich für sechs bis sieben Wochen mittels Infrarot-Thermometrie in Population B gemessen. Aus dem kontinuierlichen IRT-Oberflächentemperatur-Datensatz wurde die Oberflächentemperatur jeder Pflanze bestimmt, indem die Zeitstempel der IRT-Daten mit denen der Laserscannerdaten abgeglichen wurden. Mittelwert, Maximum, Streubereich (range) und Wachstumsrate wurden für die Bestandsparameter der Laserscannermessungen bestimmt. Unter den Bestandsparametern zeigten die Maxima und Mittelwerte unter Langzeitstress die bessere Korrelation mit dem Toleranzindex DRYM, der aus dem gleichen Experiment berechnet wurde, als die Wachstumsrate und der Streubereich. Die Trockentoleranzprognose wurde daher aus den Maxima und Mittelwerte der Bestandsparameter gemacht. Der Toleranzindex spezifischer Versuche wurde linear mit einem einfachen Regressionsmodell aus verschiedenen einzelnen Bestandparameters unter Langzeitstressbedingungen in Population A (2016) und Population (B) (2017 und 2018) vorhergesagt. Toleranz-Prognoseparameter wurden unter den Bestandparametern maximale Lichteinfalltiefe (2017), mittlerer Blattwinkel (2017, 2018 und 2016), mittlere Blattneigung und mittlere Oberflächentemperatur-Abweichung (2017 und 2018), maximale Pflanzenhöhe (2017) ausgewählt. Kein einzelner Parameter war jedoch ausreichend um DRYM vorherzusagen. Daher wurden mehrere unabhängige Parameter in einem multiplen Regressionsmodell integriert. Im multiplen Regressionsmodel wurde der spezifische Experiment-DRYM in Population A aus dem mittleren Blattwinkel (2016) vorhergesagt. In Population B konnte die spezifische Toleranz aus der maximalen Lichteinfalltiefe, der maximalen Blattneigung (2017) und der mittleren Blattneigung (2018) oder der mittleren Oberflächentemperatur-Abweichung und dem mittleren Blattwinkel (2018) vorhergesagt werden. In Daten aus mehreren Anbauperioden von Population A wählte das multiple lineare Regressionsmodel maximale Pflanzenhöhe und mittleren Blattwinkel als Prognoseparameter für Toleranz aus. In Population B wurde mittlere Blattneigung als Prognoseparameter für Toleranz ausgewählt. In Population A war jedoch die Variation, die durch das Endmodell erklärt wurde, zu niedrig. Die mittlere Toleranz hinsichtlich des Medians der Eltern (2011 – 2018) über alle FGH Pflanzen oder alle Pflanzen (FGH und Feld) wurde ferner aus der maximalen Pflanzenhöhe (Population A) und der maximalen Pflanzenhöhe und mittleren Blattneigung (Population) vorhergesagt. Insgesamt konnten Bestandsparameter als Marker für Trockentoleranz genutzt werden. Dementsprechend könnte Trockenstresszucht in Kartoffeln beschleunigt werden, indem Blattneigung, Lichteinfalltiefe, Pflanzenhöhe und Oberflächentemperatur-Abweichung als Marker für Trockentoleranz, insbesondere unter Langzeitstressbedingungen, genutzt werden. (Übersetzung Karin Köhl, 4.6.2020).show moreshow less

Download full text files

  • SHA-512:1384b35851e0264a36d5ec8130a00067832bc20a6fc13c2fade2042abb64ce0a38adca39795faa8014eaa103e38ca9248b4b90ca5063e2aa71e3de0d23e07e22

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gedif Mulugeta AneleyORCiD
URN:urn:nbn:de:kobv:517-opus4-486836
DOI:https://doi.org/10.25932/publishup-48683
Reviewer(s):Zoran NikoloskiORCiDGND, Astrid JunkerORCiD
Supervisor(s):Michael Lenhard, Köhl Karin
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/10/20
Release date:2021/01/06
Tag:Bestandsparameter; DRYM; Trockentoleranz
Canopy parameters; DRYM; Drought tolerance
Number of pages:xi, 176
RVK - Regensburg classification:WG 9300
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.