• search hit 202 of 212
Back to Result List

Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

  • By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution <lambda/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate thatBy overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution <lambda/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:André KlaußGND, Marcelle Koenig, Carsten HilleORCiDGND
DOI:https://doi.org/10.1371/journal.pone.0130717
ISSN:1932-6203
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26091552
Title of parent work (English):PLoS one
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:10
Issue:6
Number of pages:27
Funding institution:German Research Foundation [1850/30001355]; Federal Ministry of Education and Research ("ALSComBi") [03IPT517Y]; European Commission ("CHARMING") [288786]; PicoQuant GmbH
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Publishing method:Open Access
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 425
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.