• search hit 43 of 261
Back to Result List

Reprogrammable, magnetically controlled polymer actuators

Reprogrammierbar, magnetisch gesteuerte Polymeraktuatoren

  • Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether aPolymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability. At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the “grafting from” approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization. For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation. The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt%/wt%) and the amount of iron oxide in the nanocomposite was 4 wt%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite. The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off. For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C. In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators.show moreshow less
  • Polymere Materialien, die nach ihrer Programmierung reversible Formänderungen infolge einer thermischen oder elektrischen Stimulation ausführen, können als Aktuatoren in künstlichen Muskeln, sowie Bauteilen in den Bereichen Photonik, Robotik oder Sensorik dienen. Derartige Aktuatormaterialien können mit Hydrogelen, flüssigkristallinen Elastomeren, elektroaktiven Polymeren oder Formgedächtnispolymeren realisiert werden. Wenn die Anwendungsbedingungen eine direkte Erwärmung oder elektrische Stimulation dieser intelligenten Bauteile nicht zulassen, ist eine kontaktlose Aktivierung erforderlich. Eine ferngesteuerte Aktivierung der Aktuatoren wurde für Komposite aus flüssigkristallinen Elastomeren oder Formgedächtnispolymernetzwerken beschrieben, wenn eine anhaltende externe Spannung während der induktiven Erwärmung in einem magnetischen Wechselfeld angewendet wird. Solche Verbundwerkstoffe können jedoch nicht den Anforderungen von Anwendungen entsprechen, die ferngesteuerte freistehende Bewegungen der Aktuatorkomponenten erfordern. DiePolymere Materialien, die nach ihrer Programmierung reversible Formänderungen infolge einer thermischen oder elektrischen Stimulation ausführen, können als Aktuatoren in künstlichen Muskeln, sowie Bauteilen in den Bereichen Photonik, Robotik oder Sensorik dienen. Derartige Aktuatormaterialien können mit Hydrogelen, flüssigkristallinen Elastomeren, elektroaktiven Polymeren oder Formgedächtnispolymeren realisiert werden. Wenn die Anwendungsbedingungen eine direkte Erwärmung oder elektrische Stimulation dieser intelligenten Bauteile nicht zulassen, ist eine kontaktlose Aktivierung erforderlich. Eine ferngesteuerte Aktivierung der Aktuatoren wurde für Komposite aus flüssigkristallinen Elastomeren oder Formgedächtnispolymernetzwerken beschrieben, wenn eine anhaltende externe Spannung während der induktiven Erwärmung in einem magnetischen Wechselfeld angewendet wird. Solche Verbundwerkstoffe können jedoch nicht den Anforderungen von Anwendungen entsprechen, die ferngesteuerte freistehende Bewegungen der Aktuatorkomponenten erfordern. Die vorliegende Arbeit untersucht, ob fernsteuerbare Aktuatoren, deren Geometrie umprogrammierbar ist, über magneto-sensitive Multiphasen-Formgedächtnis-Copolymernetzwerk-Komposite, die Eisenoxid-Nanopartikel als magneto-sensitive, multivalente Netzpunkte enthalten, hergestellt werden können. Eine zentrale Hypothese besteht darin, dass ein magnetisch ferngesteuerter (reversibler bidirektionaler) Formgedächtniseffekt bei derartigen Nanokompositen ohne das Anlegen einer äußeren Spannung/Kraft (freistehend) erreicht werden kann, wenn die erforderliche Orientierung der kristallisierbaren Aktuatordomänen (AD) durch eine innere skelettartige Struktur, die durch eine zweite kristallisierbare Phase ausgebildet wird und die Geometrie der Probe bestimmt, sichergestellt werden kann, während die kovalent integrierten, magneto-sensitiven Eisenoxid-Nanopartikel, die kovalent in die ADs integriert sind, als Sensoren für das kontaktlose Aufheizen im Magnetfeld fungieren. Die Polymermatrix dieser Komposite sollte eine phasen-segregierte Morphologie aufweisen, die überwiegend aus kyrstallierbaren AD besteht, wobei zusätzliche andere, höher schmelzende Kristallite nach der Programmierung der Komposite eine skelettartige, geometriebestimmende Gerüststruktur ausbilden (Geometrie bestimmende Domänen, GD), die auf diese Weise die Orientierung der AD während der Aktuation sicherstellen. Das Arbeitsprinzip für die reversiblen bidirektionalen Bewegungen im Multiphasen-Formgedächtnis-PolymerNetzwerk Komposit beruht auf einer schmelzinduzierte Kontraktion (MIC) der orientierten ADs während der induktiven Erwärmung und deren kristallisationsinduzierten Ausdehnung (CIE) während des Abkühlens. Schließlich sollte die Menge an mehrwertigen magneto-empfindlichen Netzpunkten in solch einem Material so gering wie möglich sein, um eine ausreichende Gesamtelastizität des Nanokomposits zu gewährleisten und gleichzeitig ein vollständiges Schmelzen von ADs und GDs durch induktive Erwärmung ermöglichen, die erforderlich ist für die Reprogrammierung des Aktuators.Zunächst wurden oberflächenmodifizierte Eisenoxid-Nanopartikel synthetisiert und untersucht. Das Co-Präzipitationsverfahren wurde angewandt, um mNP auf der Basis von Magnetit mit einer Größe von 12±3 nm zu synthetisieren. In einem nächsten Schritt wurde eine Ringöffnungspolymerisation (ROP) zur kovalenten Oberflächenmodifizierung solcher mNP mit oligo(ε-Caprolacton) (OCL) oder oligo(ω-Pentadecalacton) (OPDL) über den "grafted from" Ansatz durchgeführt. Eine erfolgreiche Beschichtung von mNP mit OCL und OPDL konnte anhand von zwei Schmelzpeaks bei 52±1 °C (mNP-OCL) und 89±1 °C für mNP-OPDL in DSCExperimenten bestätigt werden. Es wurde weiter untersucht, ob mit einer zweiten oberflächeninitiierten ROP aus mNP-OCL oder mNP-OPDL durch Umsetzung mit ω-Pentadecalacton oder ε-Caprolacton zweischichtig oberflächenmodifizierte mNPs hergestellt werden können. Die Beobachtung von zwei unterschiedlichen Schmelzübergängen in DSCAufheizkurven sowie die mittels Gelpermeationschromatographie und 1H-NMR bestimmte Molekulargewichtszunahme der abgelösten oligomeren Beschichtungen bestätigten eine erfolgreiche Synthese der zweischichtig modifizierten Nanopartikel (mNP-OCL-OPDL und mNPOPDL-OCL). Im Gegensatz dazu zeigten TEM-Aufnahmen eine Reduktion der Dicke der Polymerbeschichtung auf den Nanopartikeln nach der zweiten ROP. Dies deutet darauf hin, dass die angewandte Synthese und Aufreinigung eine weitere Optimierung bedarf. Zur Untersuchung des Einflusses der Verteilung der mNP in einer Polymermatrix auf das magnetische Aufheizverhalten der Komposite wurden sowohl mNP als auch OCL-beschichtete Magnetit-Nanopartikel (mNP-OCL) physikalisch in vernetzte Poly(ε-caprolacton) Netzwerke eingearbeitet. In einem magnetischen Wechselfeld (AMF) mit einer magnetischen Feldstärke von H = 30 kA·m-1 wurden induktive Aufheizexperimente mit beiden Kompositmaterialien cPCL/mNP und cPCL/mNP-OCL durchgeführt. Dabei wurde für cPCL/mNP-OCL eine Massetemperatur von Tbulk = 74±2 °C erreicht, die um fast 20 °C höher lag als der ix Schmelzübergang der PCL-basierten Polymermatrix. Im Gegensatz dazu konnte für das Komposit mit einfachen mNP nur eine Tbulk von 48±2 °C erreicht werden, was für ein vollständiges Schmelzen aller PCL-Kristallite nicht ausreichend ist, wie es für eine kontaklose Schaltung des Formgedächtniseffektes erforderlich wäre. Als nächstes wurden multiphasige Nanokompositnetzwerke hergestellt, die oberflächenmodifizierte mNP als kovalente Netzpunkte enthalten. Diese Komposite wurden aus sternförmigen OCL und OPDL Precursoren, mNP-OCL durch Reaktion mit HDI synthetisiert. Das Gewichtsverhältnis von OPDL und OCL in der Reaktionsmischung betrug 15/85, und die Menge an Eisenoxid in den Nanokompositen entsprach 4 wt%. DSC-Experimente zeigten je zwei gut getrennte Schmelz- und Kristallisationspeaks, die die erforderliche phasen-segregierte Morphologie in den Nanokompositen NC-mNP-OCL bestätigten. TEM-Aufnahmen zeigten ebenfalls eine phasen-separierte Morphologie der Polymermatrix auf der Mikroebene mit tröpfchenförmigen Bereichen, die den in der OCL-Matrix dispergierten OPDL-Domänen zugeordnet werden können. Die Untersuchungen zum induktiven Aufheizverhalten der Nanokomposite bei einer Magnetfeldstärke von Hhigh = 11.2 kA·m-1 ergaben eine Oberflächen-Plateautemperatur von Tsurf = 57±1 °C. Eine effektive Wärmeerzeugungskonstante ̅P kann aus einem kinetischen Monte Carlo-Modellansatz abgeleitet werden, diese ist proportional zur Rate der Wärmeerzeugung pro Volumeneinheit der Probe. Für das untersuchte Nanokomposit betrug ̅P = 1.04±0.01 K·s-1 bei Hhigh, wohingegen bei einer Magnetfeldstärke von Hreset = 30.0 kA·m-1 eine Oberflächentemperatur von Tsurf = 88±1 °C erreicht wurde, bei der alle OPDL Kristallite aufgeschmolzen sind und der ̅P-Wert 1.93±0.02 K·s-1 betrug, welches ein gutes magnetische Aufheizverhalten charakterisiert. Der freistehende magnetisch gesteuerte reversible Formgedächtniseffekt (mrSME) wurde mit Nanokompositstreifen untersucht, der durch Biegen auf einen Winkel von 180° programmiert wurden. Durch Anwendung eines Magnetfeldes von Hhigh = 11.2 kA·m-1 wurden die Komposite auf ca. 60 °C aufgeheizt (erforderlich für das vollständige Aufschmelzen von OCL-Kristallen), und durch Ausschalten des Magnetfeldes (H0 = 0 kA·m-1) auf Umgebungstemperatur abgekühlt. Ein ausgeprägter mrSME konnte für eine durch Biegen programmierten Probe beobachtetet werden, mit Änderungen im Biegewinkel von Δϐrev = 20±3°. In einem mehrzyklischen magnetischen Biegeversuch mit 600 Heiz/Kühlzyklen konnte gezeigt werden, dass sich die Aktuations-Performance mit zunehmender Anzahl an Prüfzyklen nicht verändert, was die Zuverlässigkeit dieses Soft-Aktuators dokumentiert. Der Grad der Auslenkung (Winkeländerung) während der Aktuation sowie die Kinetik der Formänderung während des Erhitzens können durch Variation der magnetischen Feldstärke zwischen Hlow = 10.0 kA·m-1 und Hhigh sowie Einwirkzeit des Magnetfelds eingestellt werden. Nach Anwendung von Hreset = 30.0 kA·m-1 wird die programmierte Geometrie gelöscht und die nimmt wieder ihre ursprünglich gerade Form ein. Die Reprogrammierbarkeit der Nanokomposit-Aktuatoren wurde am Beispiel ein und desselben Probekörpers demonstriert, der nach Programmierung durch Biegen zunächst eine reversible Winkeländerungen bei Aktivierung vollführt, anschließend zu einer Ziehharmonika umprogrammiert wurde, die sich bei induktiver Erwärmung zusammenzieht und bei Kühlung auf Raumtemperatur ausdehnt und abschließend zu einer clipartigen Form umprogrammiert wurde, welche sich bei induktiver Erwärmung im Magnetfeld schließt und beim Kühlen wieder öffnet. In einem nächsten Schritt wurde die grundsätzliche Anwendbarkeit der vorgestellten fernsteuerbaren Formgedächtnispolymer-Aktuatoren am Beispiel des wiederholten Öffnens und Schließens einer aus NC-mNP-OCL hergestellten Multiringvorrichtung demonstriert. Dieser Demonstrator öffnet und schließt sich, wenn ein Magnetfeld von (Hhigh = 11.2 kA·m-1) wiederholend ein- und ausgeschaltet wird. Zur Untersuchung der mikro- und nanostruturellen Veränderungen im Zusammenhang mit der Aktuation der entwickelten Nanokomposite wurden AFM- und WAXS-Experimente an programmierten Nanokompositproben unter zyklischen Erwärmen und Kühlen von 25 °C auf 60 °C durchgeführt. In AFM-Experimenten wurde die Änderung des Abstands (D) zwischen repräsentativen tröpfchenartigen OPDL-Strukturen (GD) verwendet, um die reversible Änderung in D zu berechnen. Hierbei wurde Drev = 3.5±1% für NC-mNP-OCL gefunden, die mit den Ergebnissen der magneto-mechanischen Experimente gut übereinstimmen. Schließlich konnte die Analyse der azimutalen (radialen) WAXS-Streuprofile die orientierte Kristallisation der OCLAktuatordomänen bei abkühlen von 60 °C auf 25 °C zeigen. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass Formgedächtnispolymer-Nanokomposite, die mNP als magneto-sensitive multifunktionelle Netzpunkte in einer kovalent vernetzten Multiphasen-Polymermatrix enthalten, eine ferngesteuerte, freistehende Aktuation bei wiederholter Exposition in einem magnetischen Wechselfeld aufweisen. Ferner kann der Formspeicher der Nanokomposite gelöscht werden, indem diese Temperaturen oberhalb der Schmelztemperatur der geometriebestimmenden Domänen (OPDL) ausgesetzt werden, was eine Neuprogrammierung der Aktuatoren in beliebige andere Formen ermöglicht. Die Ergebnisse dieser Arbeit könnten für die Konstruktion neuartiger, umprogrammierbarer und fernsteuerbarer Polymer-Aktuatoren relevant sein.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Li WangORCiDGND
Referee:Andreas LendleinORCiDGND, Sabine Beuermann, Andreas TaubertORCiDGND
Document Type:Doctoral Thesis
Language:English
Year of first Publication:2018
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/02/21
Release Date:2018/03/08
Tag:Aktuator; Formgedächtnispolymer; Nanokomposite; magnetische Nanopartikel
actuator; magnetic nanoparticles; materials science; nanocomposite; shape-memory polymer
Pagenumber:xxviii, 107
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften