• search hit 29 of 346
Back to Result List

Preparation, characterization and modification of oil loaded protein microcapsules and composite protein-mineral microcapsules

  • This thesis deals with the synthesis of protein and composite protein-mineral microcapsules by the application of high-intensity ultrasound at the oil-water interface. While one system is stabilized by BSA molecules, the other system is stabilized by different nanoparticles modified with BSA. A comprehensive study of all synthesis stages as well as of resulting capsules were carried out and a plausible explanation of the capsule formation mechanism was proposed. During the formation of BSA microcapsules, the protein molecules adsorb firstly at the O/W interface and unfold there forming an interfacial network stabilized by hydrophobic interactions and hydrogen bonds between neighboring molecules. Simultaneously, the ultrasonic treatment causes the cross-linking of the BSA molecules via the formation of intermolecular disulfide bonds. In this thesis, the experimental evidences of ultrasonically induced cross-linking of the BSA in the shells of protein-based microcapsules are demonstrated. Therefore, the concept proposed many years agoThis thesis deals with the synthesis of protein and composite protein-mineral microcapsules by the application of high-intensity ultrasound at the oil-water interface. While one system is stabilized by BSA molecules, the other system is stabilized by different nanoparticles modified with BSA. A comprehensive study of all synthesis stages as well as of resulting capsules were carried out and a plausible explanation of the capsule formation mechanism was proposed. During the formation of BSA microcapsules, the protein molecules adsorb firstly at the O/W interface and unfold there forming an interfacial network stabilized by hydrophobic interactions and hydrogen bonds between neighboring molecules. Simultaneously, the ultrasonic treatment causes the cross-linking of the BSA molecules via the formation of intermolecular disulfide bonds. In this thesis, the experimental evidences of ultrasonically induced cross-linking of the BSA in the shells of protein-based microcapsules are demonstrated. Therefore, the concept proposed many years ago by Suslick and co-workers is confirmed by experimental evidences for the first time. Moreover, a consistent mechanism for the formation of intermolecular disulfide bonds in capsule shells is proposed that is based on the redistribution of thiol and disulfide groups in BSA under the action of high-energy ultrasound. The formation of composite protein-mineral microcapsules loaded with three different oils and shells composed of nanoparticles was also successful. The nature of the loaded oil and the type of nanoparticles in the shell, had influence on size and shape of the microcapsules. The examination of the composite capsule revealed that the BSA molecules adsorbed on the nanoparticles surface in the capsule shell are not cross-linked by intermolecular disulfide bonds. Instead, a Pickering emulsion formation takes place. The surface modification of composite microcapsules through both pre-modification of main components and also the post-modification of the surface of ready composite microcapsules was successfully demonstrated. Additionally, the mechanical properties of protein and composite protein-mineral microcapsules were compared. The results showed that the protein microcapsules are more resistant to elastic deformation.show moreshow less
  • Diese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der Öl-Wasser-Grenzfläche. Während ein System durch BSA-Moleküle stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgeführt und eine plausible Erklärung für den Mechanismus der Kapselbildung wurde vorgestellt. Während der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmoleküle als Erstes an der O/W-Grenzfläche, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbrückenbindungen zwischen den benachbarten Molekülen stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Moleküle über die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise für die durch Ultraschall induzierteDiese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der Öl-Wasser-Grenzfläche. Während ein System durch BSA-Moleküle stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgeführt und eine plausible Erklärung für den Mechanismus der Kapselbildung wurde vorgestellt. Während der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmoleküle als Erstes an der O/W-Grenzfläche, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbrückenbindungen zwischen den benachbarten Molekülen stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Moleküle über die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise für die durch Ultraschall induzierte Quervernetzung von BSA in den Schalen der proteinbasierten Mikrokapseln aufgezeigt. Deshalb wurde das Konzept, das vor vielen Jahren von Suslick und seinen Mitarbeitern vorgestellt wurde, zum ersten Mal durch experimentelle Nachweise bestätigt. Außerdem wurde ein konsistenter Mechanismus für die Bildung der intermolekularen Disulfidbindungen in der Kapselschale vorgestellt, der auf der Neuverteilung der Thiol- und Disulfidgruppen in BSA unter der Wirkung von hochenergetischem Ultraschall basiert. Auch die Bildung von kompositen Protein-Mineral-Mikrokapseln, die mit drei verschiedenen Ölen gefüllt wurden und deren Schalen aus Nanopartikeln bestehen, war erfolgreich. Die Beschaffenheit des Öls und die Art der Nanopartikel in der Schale hatten Einfluss auf die Größe und Form der Mikrokapseln. Die Untersuchung der kompositen Kapseln zeigte, dass die BSA-Moleküle, die an der Oberfläche der Nanopartikel in der Kapselschale adsorbiert sind, nicht durch intermolekulare Disulfidbindungen quervernetzt sind. Stattdessen findet die Bildung einer Pickering-Emulsion statt. Die Oberflächenmodifizierung der kompositen Mikrokapseln durch Vormodifizierung der Hauptbestandteile und auch durch Postmodifizierung der Oberfläche der fertigen kompositen Mikrokapseln wurde erfolgreich demonstriert. Zusätzlich wurden die mechanischen Eigenschaften beider Kapselarten verglichen. Dabei erwiesen sich die Protein-Mikrokapseln widerstandsfähiger gegenüber elastischer Deformation.show moreshow less

Download full text files

  • SHA-512:a6636a7cf95ae07e26216a88b62bfd3909485a3187bdecf7522c773b31685a1de02d04436684340ff0680a5b07fc4e5721e344196c5c841aa56c4f22db584cd3

Export metadata

Metadaten
Author details:Ulrike DoeringORCiDGND
URN:urn:nbn:de:kobv:517-opus4-559589
DOI:https://doi.org/10.25932/publishup-55958
translated title (German):Herstellung, Charakterisierung und Modifizierung von Öl-gefüllten Protein-Mikrokapseln und kompositen Protein-Mineral-Mikrokapseln
Reviewer(s):Alexander BökerORCiDGND, Ilko BaldORCiDGND, Michael GradzielskiORCiD
Supervisor(s):Alexander Böker
Publication type:Doctoral Thesis
Language:English
Year of first publication:2022
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/08/15
Release date:2022/10/05
Tag:Beschallung; Kolloidchemie; Pickering Emulsion; Proteinmikrokapseln
Colloid Chemistry; Pickering Emulsion; Protein Microcapsules; Sonication
Number of pages:viii, 115
RVK - Regensburg classification:VE 8007, VK 8567, VK 8527
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.