• search hit 61 of 2882
Back to Result List

Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity

  • Water-soluble block copolymers were prepared from the non-ionic monomer N-isopropylacrylamide (NIPA) and the zwitterionic monomer 3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]-ammonio propane sulfonate (SPP) by sequential free radical polymerization via the RAFT process. Such block copolymers with two hydrophilic blocks exhibit double thermo- responsive behavior in water: the poly-NIPA block shows a lower critical solution temperature, whereas the poly-SPP block exhibits an upper critical solution temperature. Appropriate design of the block lengths leads to block copolymers which stay in solution in the full temperature range between 0°C and 100°C. Both blocks of these polymers dissolve in water at intermediate temperatures, whereas at high temperatures, the poly-NIPA block forms colloidal hydrophobic associates that are kept in solution by the poly-SPP block, and at low temperatures, the poly-SPP block forms colloidal polar aggregates that are kept in solution by the poly-NIPA block. In this way, colloidal aggregates can be preparedWater-soluble block copolymers were prepared from the non-ionic monomer N-isopropylacrylamide (NIPA) and the zwitterionic monomer 3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]-ammonio propane sulfonate (SPP) by sequential free radical polymerization via the RAFT process. Such block copolymers with two hydrophilic blocks exhibit double thermo- responsive behavior in water: the poly-NIPA block shows a lower critical solution temperature, whereas the poly-SPP block exhibits an upper critical solution temperature. Appropriate design of the block lengths leads to block copolymers which stay in solution in the full temperature range between 0°C and 100°C. Both blocks of these polymers dissolve in water at intermediate temperatures, whereas at high temperatures, the poly-NIPA block forms colloidal hydrophobic associates that are kept in solution by the poly-SPP block, and at low temperatures, the poly-SPP block forms colloidal polar aggregates that are kept in solution by the poly-NIPA block. In this way, colloidal aggregates can be prepared in water which switch reversibly, and without any additive, their "inside" to the "outside", and vice versa. The aggregates provide microdomains and surfaces of different character, which can be controlled by a simple thermal stimulus.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michel Arotcarena, Bettina Heise, Sultana Ishaya, André LaschewskyORCiDGND
Publication type:Article
Language:English
Year of first publication:2002
Publication year:2002
Release date:2017/03/24
Source:Journal of the American Chemical Society. - 124 (2002), 14, S. 3787 - 3793
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.