The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 89 of 140
Back to Result List

Ultrafast tailored strain fields in nanostructures

Ultraschnelle massgeschneiderte Dehnungsfelder in Nanostrukturen

  • This publication based thesis, which consists of seven published articles, summarizes my contributions to the research field of laser excited ultrafast structural dynamics. The coherent and incoherent lattice dynamics on microscopic length scales are detected by ultrashort optical and X-ray pulses. The understanding of the complex physical processes is essential for future improvements of technological applications. For this purpose, tabletop soruces and large scale facilities, e.g. synchrotrons, are employed to study structural dynamics of longitudinal acoustic strain waves and heat transport. The investigated effects cover timescales from hundreds of femtoseconds up to several microseconds. The main part of this thesis is dedicated to the investigation of tailored phonon wave packets propagating in perovskite nanostructures. Tailoring is achieved either by laser excitation of nanostructured bilayer samples or by a temporal series of laser pulses. Due to the propagation of longitudinal acoustic phonons, the out-of-plane latticeThis publication based thesis, which consists of seven published articles, summarizes my contributions to the research field of laser excited ultrafast structural dynamics. The coherent and incoherent lattice dynamics on microscopic length scales are detected by ultrashort optical and X-ray pulses. The understanding of the complex physical processes is essential for future improvements of technological applications. For this purpose, tabletop soruces and large scale facilities, e.g. synchrotrons, are employed to study structural dynamics of longitudinal acoustic strain waves and heat transport. The investigated effects cover timescales from hundreds of femtoseconds up to several microseconds. The main part of this thesis is dedicated to the investigation of tailored phonon wave packets propagating in perovskite nanostructures. Tailoring is achieved either by laser excitation of nanostructured bilayer samples or by a temporal series of laser pulses. Due to the propagation of longitudinal acoustic phonons, the out-of-plane lattice spacing of a thin film insulator-metal bilayer sample is modulated on an ultrafast timescale. This leads to an ultrafast modulation of the X-ray diffraction efficiency which is employed as a phonon Bragg switch to shorten hard X-ray pulses emitted from a 3rd generation synchrotron. In addition, we have observed nonlinear mixing of high amplitude phonon wave packets which originates from an anharmonic interatomic potential. A chirped optical pulse sequence excites a narrow band phonon wave packet with specific momentum and energy. The second harmonic generation of these phonon wave packets is followed by ultrafast X-ray diffraction. Phonon upconversion takes place because the high amplitude phonon wave packet modulates the acoustic properties of the crystal which leads to self steepening and to the successive generation of higher harmonics of the phonon wave packet. Furthermore, we have demonstrated ultrafast strain in direction parallel to the sample surface. Two consecutive so-called transient grating excitations displaced in space and time are used to coherently control thermal gradients and surface acoustic modes. The amplitude of the coherent and incoherent surface excursion is disentangled by time resolved X-ray reflectivity measurements. We calibrate the absolute amplitude of thermal and acoustic surface excursion with measurements of longitudinal phonon propagation. In addition, we develop a diffraction model which allows for measuring the surface excursion on an absolute length scale with sub-Äangström precision. Finally, I demonstrate full coherent control of an excited surface deformation by amplifying and suppressing thermal and coherent excitations at the surface of a laser-excited Yttrium-manganite sample.show moreshow less
  • Diese publikations basierte Dissertation enthält sieben veröffentlichte Artikel und ist ein Beitrag zum Forschungsfeld der laserangeregten ultraschnellen Strukturdynamik. Dabei wird die kohärente und inkohärente Gitterdynamik mit Hilfe von ultrakurzen optischen Pulsen sowie Röntgenpulsen auf mikroskopischer Längenskala untersucht. Das Verständnis dieser komplexen physikalischen Prozesse ist essenziell für die Verbesserung von zukünftigen technologischen Anwendungen. Hierfür wurde die Strukturdynamik von longitudinal akustischen Schallwellen und Wärmetransport mit Hilfe von verschieden Messinstrumenten, basierend auf Labor und Synchrotronstrahlungsquellen, untersucht. Die untersuchten Effekte umfassen Zeitskalen von einigen hundert Femtosekunden bis hin zu mehreren Mikrosekunden. Der Hauptteil meiner Dissertation beruht auf der Untersuchungen von definiert angeregten Phonon-Wellenpakten, die sich in Perowskit Nanostrukturen ausbreiten. Die Kontrolle wird entweder durch Laseranregung einer nanostruktieren Doppelschichtprobe oder durchDiese publikations basierte Dissertation enthält sieben veröffentlichte Artikel und ist ein Beitrag zum Forschungsfeld der laserangeregten ultraschnellen Strukturdynamik. Dabei wird die kohärente und inkohärente Gitterdynamik mit Hilfe von ultrakurzen optischen Pulsen sowie Röntgenpulsen auf mikroskopischer Längenskala untersucht. Das Verständnis dieser komplexen physikalischen Prozesse ist essenziell für die Verbesserung von zukünftigen technologischen Anwendungen. Hierfür wurde die Strukturdynamik von longitudinal akustischen Schallwellen und Wärmetransport mit Hilfe von verschieden Messinstrumenten, basierend auf Labor und Synchrotronstrahlungsquellen, untersucht. Die untersuchten Effekte umfassen Zeitskalen von einigen hundert Femtosekunden bis hin zu mehreren Mikrosekunden. Der Hauptteil meiner Dissertation beruht auf der Untersuchungen von definiert angeregten Phonon-Wellenpakten, die sich in Perowskit Nanostrukturen ausbreiten. Die Kontrolle wird entweder durch Laseranregung einer nanostruktieren Doppelschichtprobe oder durch eine zeitlich versetzte Laserpulsfolge erreicht. Dabei wird die Einheitszelle senkrecht zu den Gitterebenen auf ultraschnellen Zeiten modifiziert. Daraus folgt eine ultraschnelle Modulation der Röntgenbeugungs Effizienz, die als Phonon Braggschalter verwendet wird, um harte Röntgenpulse von Synchrotrons der dritten Generation zu verkürzen. Zudem haben wir die nichtlineare Mischung von Phonon-Wellenpaketen mit hoher Amplitude beobachtet, die der Anharmonizität des interatomaren Potential herrührt. Durch eine gechirpte optische Laserpulsfolge wird ein schmalbandiges Phonon-Wellenpaket mit definiertem Impuls und definierter Energie angeregt. Dabei wird die Erzeugung der zweiten Harmonischen mittels ultraschneller Röntgenbeugung untersucht. Die Phononkonversion findet hierbei durch die hohe Phononamplitude statt, die die akustischen Eigenschaften des Kristalls verändert. Dieser Prozess führt zum Aufsteilen der Wellenfront und folglich zur Erzeugung der höheren Harmonischen des Phonon-Wellenpakets. Außerdem habe ich ultraschnelle Schallpulse parallel zur Richtung der Probenoberfläche demonstriert. Dabei werden zwei sogenannte transiente Gitteranregungen verwendet, die räumlich und zeitlich zueinander versetzt sind, um thermische Gradienten und akustische Oberflächenmoden kohärent zu kontrollieren. Die Amplitude der kohärenten und inkohärenten Oberflächenausdehnung kann mit Hilfe von Röntgenreflektivität getrennt betrachtet werden. Zusätzlich haben wir ein Beugungsmodel entwickelt, mit dem wir die Oberflächenausdehnung auf einer absoluten Längenskale mit sub-Ängström Präzision kalibrieren. Schließlich zeige ich volle kohärente Kontrolle von der angeregten Oberflächenausdehnung durch Verstärkung und Unterdrückung von thermischen und kohärenten Anregungen auf der Oberfläche einer dünnen, laserangeregten Yttriummanganat Schicht.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mathias SanderORCiD
URN:urn:nbn:de:kobv:517-opus4-417863
Supervisor(s):Matias Bargheer
Publication type:Doctoral Thesis
Language:English
Year of first publication:2018
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/07/20
Release date:2018/10/15
Tag:Dehnung; Ultraschnelle Röntgenbeugung; akustische Wellen
Ultrafast X-ray diffraction; acoustic waves; strain
Number of pages:xvii, 119
RVK - Regensburg classification:UP 1500, ZM 7028
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.