• search hit 50 of 721
Back to Result List

Simulation of the nodal flow of mutant embryos with a small number of cilia

  • Left-right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun. 3, 622 (doi:10.1038/ncomms1624)) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses-vesicle transport and mechanosensing-are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependentLeft-right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun. 3, 622 (doi:10.1038/ncomms1624)) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses-vesicle transport and mechanosensing-are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependent on the ciliary positions. Although the maximum wall shear rate was also influenced by ciliary position, the mean wall shear rate at the perinodal wall increased monotonically with the number of cilia. We also investigated the membrane tension of immotile cilia, which is relevant to the regulation of mechanotransduction. The results indicated that tension of about 0.1 mu Nm(-1) was exerted at the base even when the fluid shear rate was applied at about 0.1 s(-1). The area of high tension was also localized at the upstream side, and negative tension appeared at the downstream side. Such localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise circulation was induced in the node by rotation of a few cilia. Our numerical results support the mechanosensing hypothesis, and we expect that our study will stimulate further experimental investigations of mechanotransduction in the near future.show moreshow less

Download full text files

  • pmnr1056.pdfeng
    (2496KB)

    SHA-512:fe584d3c768cb55731da253f24a6e21eea720ac3b81fa8271a1ba8c73f16ff720823ca48e9469a6d19c461abe49eedec7157b82fc9da456bd74b87196c837fb8

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Toshihiro OmoriORCiD, Katja Winter, Kyosuke Shinohara, Hiroshi HamadaORCiD, Takuji IshikawaORCiDGND
URN:urn:nbn:de:kobv:517-opus4-468734
DOI:https://doi.org/10.25932/publishup-46873
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe
Subtitle (English):comparison of mechanosensing and vesicle transport hypotheses
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1056)
Publication type:Postprint
Language:English
Date of first publication:2020/12/22
Publication year:2018
Publishing institution:Universität Potsdam
Release date:2020/12/22
Tag:boundary element method; fluid-structure interaction; left-right asymmetry; nodal flow
Issue:1056
Number of pages:17
Source:Royal Society Open Science 5 (2018) 180601 DOI: 10.1098/rsos.180601
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.