The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10058 of 10113
Back to Result List

Polymers at membranes

  • The surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption. In the last part of theThe surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption. In the last part of the thesis, we study membranes under the influence of non-anchored polymers in solution. In the limit of pure steric interactions between the membrane and free polymers, the membrane curves towards the polymers (in contrast to the case of anchored polymers). In the limit of strong adsorption the membrane bends away from the polymers.show moreshow less
  • Die Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen bestätigen die perturbativ berechneten Resultate. Bei Hinzunahme eines attraktiven Potentials zwischen Polymer und Membran verringert sich die ursprünglich vom Polymer induzierte Krümmung. Im Limes starker Adsorption, in welchem das Polymer ganz auf der Membranoberfläche lokalisiert ist, verschwindet der Polymerdruck und die durch diesen induzierte Krümmung der Membran. Falls das Polymer nicht direkt auf der MembranoberflächeDie Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen bestätigen die perturbativ berechneten Resultate. Bei Hinzunahme eines attraktiven Potentials zwischen Polymer und Membran verringert sich die ursprünglich vom Polymer induzierte Krümmung. Im Limes starker Adsorption, in welchem das Polymer ganz auf der Membranoberfläche lokalisiert ist, verschwindet der Polymerdruck und die durch diesen induzierte Krümmung der Membran. Falls das Polymer nicht direkt auf der Membranoberfläche verankert ist, sondern in endlichem Ankerabstand, biegt sich die Membran im adsorbierten Fall zum Polymer hin. Im letzten Teil der Arbeit werden nicht verankerte Polymere in Lösung betrachtet. Untersucht wird der Einfluss einer solchen Polymerlösung auf die Krümmung der Membran. Im Grenzfall einer rein sterischen, repulsiven Wechselwirkung zwischen Polymeren und Membran biegt sich diese, im Gegensatz zur verankerten Situation, zur Lösung hin. Bei zunehmender Attraktion biegt sich die Membran im Limes starker Adsorption der Polymere von der Lösung weg.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Markus BreidenichGND
URN:urn:nbn:de:kobv:517-0000284
Advisor:Thomas Vilgis, Erich Eisenriegler, Reinhard Lipowsky, Roland R. Netz
Document Type:Doctoral Thesis
Language:English
Year of Completion:2000
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2000/11/03
Release Date:2005/02/07
Tag:Biomembranen; Membranen; Polymere
RVK - Regensburg Classification:UP 1080 , UV 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik