The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10016 of 10114
Back to Result List

Amplituden der Kernphasen im Bereich der Kaustik B und Untersuchung der Struktur der Übergangszone zum inneren Erdkern mit spektralen Amplituden der diffraktierten Phase PKP(BC)

  • Das Ziel dieser Arbeit ist es, die Strukturen im äußeren Erdkern zu untersuchen und Rückschlüsse auf die sich daraus ergebenden Konsequenzen für geodynamische Modellvorstellungen zu ziehen. Die Untersuchung der Kernphasenkaustik B mit Hilfe einer kumulierten Amplituden-Entfernungskurve ist Gegenstand des ersten Teils. Dazu werden die absoluten Amplituden der PKP-Phasen im Entfernungsbereich von 142 ° bis 147 ° bestimmt und mit den Amplituden synthetischer Seismogramme verglichen. Als Datenmaterial dienen die Breitbandregistrierungen des Deutschen Seismologischen Re-gionalnetzes (GRSN 1 ) und des Arrays Gräfenberg (GRF). Die verwendeten Wellen-formen werden im WWSSN-SP-Frequenzbereich gefiltert. Als Datenbasis dienen vier Tiefherdbeben der Subduktionszone der Neuen Hebriden (Vanuatu Island) und vier Nuklearexplosionen, die auf dem Mururoa und Fangataufa Atoll im Südpazifik stattgefunden haben. Beide Regionen befinden sich vom Regionalnetz aus gesehen in einer Epizentraldistanz von ungefähr 145 °. Die Verwendung einesDas Ziel dieser Arbeit ist es, die Strukturen im äußeren Erdkern zu untersuchen und Rückschlüsse auf die sich daraus ergebenden Konsequenzen für geodynamische Modellvorstellungen zu ziehen. Die Untersuchung der Kernphasenkaustik B mit Hilfe einer kumulierten Amplituden-Entfernungskurve ist Gegenstand des ersten Teils. Dazu werden die absoluten Amplituden der PKP-Phasen im Entfernungsbereich von 142 ° bis 147 ° bestimmt und mit den Amplituden synthetischer Seismogramme verglichen. Als Datenmaterial dienen die Breitbandregistrierungen des Deutschen Seismologischen Re-gionalnetzes (GRSN 1 ) und des Arrays Gräfenberg (GRF). Die verwendeten Wellen-formen werden im WWSSN-SP-Frequenzbereich gefiltert. Als Datenbasis dienen vier Tiefherdbeben der Subduktionszone der Neuen Hebriden (Vanuatu Island) und vier Nuklearexplosionen, die auf dem Mururoa und Fangataufa Atoll im Südpazifik stattgefunden haben. Beide Regionen befinden sich vom Regionalnetz aus gesehen in einer Epizentraldistanz von ungefähr 145 °. Die Verwendung eines homogen instrumentierten Netzes von Detektoren und die Anwendung von Stations- und Magnitudenkorrekturen verringern den Hauptteil der Streuung bei den Amplitudenwerten. Dies gilt auch im Vergleich zu Untersuchungen von langperiodischen Amplituden im Bereich der Kernphasenkaustik (Häge, 1981). Ein weiterer Grund für die geringe Streuung ist die ausschließliche Verwendung von Ereignissen mit kurzer impulsiver Herdzeitfunktion. Erst die geringe Streuung der Amplitudenwerte ermöglicht eine Interpretation der Daten. Die theoretischen Amplitudenkurven der untersuchten Erdmodelle zeigen im Bereich der Kaustik B einen gleichartigen Kurvenverlauf. Bei allen Berechnungen wird ein einheitliches Modell für die Güte der P- und S-Wellen verwendet, das sich aus den Q-Werten der Modelle CIT112 und PREM 2 zusammensetzt. Die mit diesem Q-Modell berechneten Amplituden liegen in geringem Maße oberhalb der gemessenen Amplituden. Dies braucht nicht berücksichtigt zu werden, da die kumulierte Amplituden-Entfernungskurve anhand der Lage des Maximums auf der Entfernungsachse ausgewertet wird. Folglich wird darauf verzichtet, ein alternatives Q-Modell zu entwickeln. Hinsichtlich der Lage des Kaustikmaximums lassen sich die untersuchten Erdmodelle in zwei Kategorien einteilen. Eine Gruppe besteht aus den Modellen IASP91 und 1066B, deren Maxima bei 144.6 ° und 144.7 ° liegen. Zur zweiten Gruppe von Modellen zählen AK135, PREM und SP6 mit den Maxima bei 145.1 ° und 145.2 ° (SP6). Die gemessene Amplitudenkurve hat ihr Maximum bei 145 °. Alle Entfernungsangaben beziehen sich auf eine Herdtiefe von 200 km. Die Kaustikentfernung für einen Oberflächenherd ist jeweils um 0.454 ° größer als die angegeben Werte. Damit liegen die Maxima der Modelle AK135 und PREM nur 0.1 ° neben dem der gemessenen kumulierten Amplitudenkurve. Daher wird auf die Erstellung eines eigenen Modells verzichtet, da dieses eine unwesentlich verbesserte Amplitudenkurve aufweisen würde. Das Ergebnis der Untersuchung ist die Erstellung einer gemessenen kumulierten Amplituden-Entfernungskurve für die Kaustik B. Die Kurve legt die Position der Kaustik B für kurzperiodische Daten auf ± 0.15 ° fest und bestimmt damit, welche Erdmodelle für die Beschreibung der Amplituden im Entfernungsbereich der Kaustik B besonders geeignet sind. Die Erdmodelle AK135 und PREM, ergänzt durch ein einheitliches Q-Modell, geben den Verlauf der Amplituden am besten wieder. Da die Amplitudenkurven beider Modelle nahe beieinander liegen, sind sie als gleichwertig zu bezeichnen. Im zweiten Teil der Arbeit wird die Struktur der Übergangszone in den inneren Erdkern anhand des spektralen Abklingens der Phase PKP(BC)diff am Punkt C der Laufzeitkurve untersucht. Der physikalische Prozeß der Beugung ist für die starke Abnahme der Amplituden dieser Phase verantwortlich. Die Diffraktion beeinflußt das Abklingverhalten verschiedener Frequenzanteile des seismischen Signals auf unterschiedliche Weise. Eine Deutung des Verhaltens erfordert die Berechnung von Abklingspektren. Dabei wird die Abschwächung des PKP(BC)diff Signals für acht Frequenzen zwischen 6.4 s und 1.25 Hz ermittelt und als Spektrum dargestellt. Die Form des Abklingspektrums ist charakteristisch für die Beschaffenheit der Geschwindigkeitsstruktur direkt oberhalb der Grenze zum inneren Erdkern (GIK). Die Beben, deren Kernphasen im Regionalnetz als diffraktierte Kernphasen BCdiff registriert werden, liegen in einem Entfernungsbereich jenseits von 150 °. In dieser Distanz befinden sich die Erdbebenherde der Tonga-Fidschi-Subduktionszone, deren Breitbandaufzeichnungen verwendet werden. Die Auswertung unkorrigierter Wellenformen ergibt Abklingspektren, die mit plausiblen Erdmodellen nicht in Einklang zu bringen sind. Aus diesem Grund werden die Daten einer spektralen Stationskorrektur unterzogen, die eigens zu diesem Zweck ermittelt wird. Am Beginn der Auswertung steht eine Prüfung bekannter Erdmodelle mit unterschiedlichen Geschwindigkeitsstrukturen oberhalb der GIK. Zu den untersuchten Modellen zählen PREM, IASP91, AK135Q, PREM2, SP6, OICM2 und eine Variante des PREM. Die Untersuchung ergibt, daß Modelle, die einen verringerten Gradienten oberhalb der GIK aufweisen, eine bessere Übereinstimmung mit den gemessenen Daten zeigen als Modelle ohne diese Übergangszone. Zur Verifikation dieser These wird ein Erdmodell, das keinen verringerten Gradienten oberhalb der GIK besitzt (PREM), durch eine Reihe unterschiedlicher Geschwindigkeitsverläufe in diesem Bereich ergänzt und deren synthetische Seismogramme berechnet. Das Resultat der Untersuchung sind zwei Varianten des PREM, deren Frequenzanalyse eine gute Übereinstimmung mit den Daten zeigt. Das Abklingspektrum des Erdmodells PD47, das in einer 380 km mächtigen Schicht einen negativen Gradienten besitzt, zeigt eine große Ähnlichkeit mit den gemessenen Spektren. Dennoch kann es nicht als realistisches Modell angesehen werden, da der Punkt C in einer zu großen Entfernung liegt. Darüber hinaus müßte die zu kurze Differenzlaufzeit zwischen PKP(AB) und PKP(DF) beziehungsweise PKIKP durch eine größere Änderung der Geschwindigkeitsstruktur im inneren Kern kompensiert werden. Es wird deshalb das Modell PD27a favorisiert, das diese Nachteile nicht aufweist. PD27a besitzt eine Schicht konstanter Geschwindigkeit oberhalb der GIK mit einer Mächtigkeit von 150 km. Die Art des Geschwindigkeitsverlaufs steht im Einklang mit der geodynamischen Modellvorstellung, nach der eine Anreicherung leichter Elemente oberhalb der GIK vorliegt, die als Ursache für die Konvektion im äußeren Erdkern anzusehen ist.show moreshow less
  • In this thesis the structure of the outer core is investigated with PKP core phases. The knowledge of the physical properties of the earth′s deep interior in this region is important for the understanding of geodynamical processes like the convective flow in the liquid outer core and the differential rotation of the earth′s inner core. The first part of this thesis describes the investigation of the PKP caustic point B near 145 °. For this purpose a cumulative amplitude distance curve is determined and compared with theoretical amplitude distance curves of different standard earth models. The data are broadband seismograms of the German Regional Seismic Network (GRSN) and the Gräfenberg Array (GRF). In order to measure the absolute amplitudes of the PKP phases, a WWSSN-SP filter is applied to the seismograms. The source regions are located in the South Pacific near Vanuatu Island (4 earthquakes) and on the French atolls Mururoa and Fangataufa (4 explosions). The advantage of a standardized network of seismic stationsIn this thesis the structure of the outer core is investigated with PKP core phases. The knowledge of the physical properties of the earth′s deep interior in this region is important for the understanding of geodynamical processes like the convective flow in the liquid outer core and the differential rotation of the earth′s inner core. The first part of this thesis describes the investigation of the PKP caustic point B near 145 °. For this purpose a cumulative amplitude distance curve is determined and compared with theoretical amplitude distance curves of different standard earth models. The data are broadband seismograms of the German Regional Seismic Network (GRSN) and the Gräfenberg Array (GRF). In order to measure the absolute amplitudes of the PKP phases, a WWSSN-SP filter is applied to the seismograms. The source regions are located in the South Pacific near Vanuatu Island (4 earthquakes) and on the French atolls Mururoa and Fangataufa (4 explosions). The advantage of a standardized network of seismic stations and the usage of station and magnitude corrections is a reduction of the scatter of the amplitude data. There is even less scatter than in studies with long period amplitude data (Häge, 1981). Another reason for the reduced scattering is the use of events with an impulsive source time function. Only the low scattering of the amplitude values makes it possible to interpret the data. More scattering of the data would have prevented an interpretation. The theoretical amplitude curves are similar in the caustic B distance range. The Q depth distribution for P and S waves used for calculating the synthetic seismograms is a combination of the values of the models CIT112 and PREM. The amplitudes determined with the help of this kind of model are slightly higher than the actually measured amplitudes. However, this needs not be taken into account because the interpretation is based on the position of the caustic peak. Therefore I rejected the computation of an improved Q model. Regarding the position of the caustic point there are two categories of earth models. The first group consists of the models IASP91 and 1066B with their maxima at 144.6 ° and 144.7 ° respectively. AK135, PREM and SP6 belong to a second group of models with caustic peaks at 145.1 ° and 145.2 ° (SP6). The measured curve has its maximum at 145 °. All distances refer to a source depth of 200 km. For a surface focus the increase in distance is 0.454 °. Therefore the peaks of the models AK135 and PREM are only 0.1 ° beside the maximum of the measured amplitude curve. The main result of this investigation is the amplitude distance curve in the vicinity of the cusp B. The curve determines the position of this point with an accuracy of ± 0.15 ° and points to earth models which would be good for modeling the amplitudes in the distance range of the PKP caustic B. The synthetic seismograms calculated for AK135 and PREM together with a standardized Q model fit the measured amplitude curve equally well. In the second part of this study the structure of the transition zone to the earth′s inner core is investigated by using the spectral decay of the diffracted wave PKP(BC)diff at point C of the travel time curve. The physical process of diffraction is responsible for the strong reduction in amplitude of this wave. The influence of the diffraction on the seismic signal strongly depends on frequency. The interpretation of this phenomenon requires a calculation of decay spectra. In practice the attenuation of the PKP(BC)diff signal for eight frequencies between 6.4 s and 1.25 Hz are measured and visualized as a decay spectrum. The shape of a spectrum is characteristic of the velocity gradient above the inner core boundary (ICB). Those earthquakes whose core phases are recorded as diffracted core phases BCdiff lie beyond 150 °. In this distance range there are the epicenters of the Tonga-Fiji slab. The broadband waveform data of the earthquakes in this region is used in this study. Decay spectra of waveform data which are not corrected for station site effects are incompatible with standard earth models. Therefore a spectral station correction is applied, which was especially determined for this purpose. The investigation starts with a review of a number of well-known earth models like PREM, IASP91, AK135Q, PREM2, SP6, OICM2 and a version of PREM. All these models have different velocity structures at the ICB. It is shown that models with a reduced velocity gradient above the ICB agree with the data rather than models without such a transition zone. For verification purposes a model without such a reduced gradient (PREM) is completed with different kinds of gradient zones to calculate synthetic seismograms. Two variants of the PREM correspond with the measured decay constants. The decay constants of model PD47 are very close to the measured ones. This model has a 380 km thick negative gradient above the ICB. Nevertheless it is not a realistic model because point C lies in a unrealistic great distance. As a result of the low velocity zone above the inner core there is a differential travel time between the PKP(AB) and the PKP(DF) phase (also PKIKP) which is too short. This would have to be compensated by a correction of the velocities in the inner core. Thus PD27a is the most suitable model which does not have the above mentioned disadvantages. PD27a has a 150 km thick layer of constant velocity above the ICB. This kind of velocity model is compatible with geodynamical theories according to which an enrichment of light elements above the ICB is present and powers the convection in the outer earth core by its buoyancy.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Michael D. C. Wolf
URN:urn:nbn:de:kobv:517-0000408
Advisor:Frank Scherbaum, Gerhard Müller, Michael H. Weber
Document Type:Doctoral Thesis
Language:German
Year of Completion:2002
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2002/04/10
Release Date:2005/02/10
Tag:seismology ; PKP caustic point B ; diffraction of PKP core phases ; decay spectra of waveform data ; transition zone to the earth's inner core ; Germa
RVK - Regensburg Classification:TF 04999
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften