• search hit 65 of 83
Back to Result List

The effect of water storages on temporal gravity measurements and the benefits for hydrology

Der Effekt von Wasserspeicher auf zeitabhängige Gravitationsmessungen und der Nutzen für die Hydrologie

  • Temporal gravimeter observations, used in geodesy and geophysics to study variation of the Earth’s gravity field, are influenced by local water storage changes (WSC) and – from this perspective – add noise to the gravimeter signal records. At the same time, the part of the gravity signal caused by WSC may provide substantial information for hydrologists. Water storages are the fundamental state variable of hydrological systems, but comprehensive data on total WSC are practically inaccessible and their quantification is associated with a high level of uncertainty at the field scale. This study investigates the relationship between temporal gravity measurements and WSC in order to reduce the hydrological interfering signal from temporal gravity measurements and to explore the value of temporal gravity measurements for hydrology for the superconducting gravimeter (SG) of the Geodetic Observatory Wettzell, Germany. A 4D forward model with a spatially nested discretization domain was developed to simulate and calculate the localTemporal gravimeter observations, used in geodesy and geophysics to study variation of the Earth’s gravity field, are influenced by local water storage changes (WSC) and – from this perspective – add noise to the gravimeter signal records. At the same time, the part of the gravity signal caused by WSC may provide substantial information for hydrologists. Water storages are the fundamental state variable of hydrological systems, but comprehensive data on total WSC are practically inaccessible and their quantification is associated with a high level of uncertainty at the field scale. This study investigates the relationship between temporal gravity measurements and WSC in order to reduce the hydrological interfering signal from temporal gravity measurements and to explore the value of temporal gravity measurements for hydrology for the superconducting gravimeter (SG) of the Geodetic Observatory Wettzell, Germany. A 4D forward model with a spatially nested discretization domain was developed to simulate and calculate the local hydrological effect on the temporal gravity observations. An intensive measurement system was installed at the Geodetic Observatory Wettzell and WSC were measured in all relevant storage components, namely groundwater, saprolite, soil, top soil and snow storage. The monitoring system comprised also a suction-controlled, weighable, monolith-filled lysimeter, allowing an all time first comparison of a lysimeter and a gravimeter. Lysimeter data were used to estimate WSC at the field scale in combination with complementary observations and a hydrological 1D model. Total local WSC were derived, uncertainties were assessed and the hydrological gravity response was calculated from the WSC. A simple conceptual hydrological model was calibrated and evaluated against records of a superconducting gravimeter, soil moisture and groundwater time series. The model was evaluated by a split sample test and validated against independently estimated WSC from the lysimeter-based approach. A simulation of the hydrological gravity effect showed that WSC of one meter height along the topography caused a gravity response of 52 µGal, whereas, generally in geodesy, on flat terrain, the same water mass variation causes a gravity change of only 42 µGal (Bouguer approximation). The radius of influence of local water storage variations can be limited to 1000 m and 50 % to 80 % of the local hydro¬logical gravity signal is generated within a radius of 50 m around the gravimeter. At the Geodetic Observatory Wettzell, WSC in the snow pack, top soil, unsaturated saprolite and fractured aquifer are all important terms of the local water budget. With the exception of snow, all storage components have gravity responses of the same order of magnitude and are therefore relevant for gravity observations. The comparison of the total hydrological gravity response to the gravity residuals obtained from the SG, showed similarities in both short-term and seasonal dynamics. However, the results demonstrated the limitations of estimating total local WSC using hydrological point measurements. The results of the lysimeter-based approach showed that gravity residuals are caused to a larger extent by local WSC than previously estimated. A comparison of the results with other methods used in the past to correct temporal gravity observations for the local hydrological influence showed that the lysimeter measurements improved the independent estimation of WSC significantly and thus provided a better way of estimating the local hydrological gravity effect. In the context of hydrological noise reduction, at sites where temporal gravity observations are used for geophysical studies beyond local hydrology, the installation of a lysimeter in combination with complementary hydrological measurements is recommended. From the hydrological view point, using gravimeter data as a calibration constraint improved the model results in comparison to hydrological point measurements. Thanks to their capacity to integrate over different storage components and a larger area, gravimeters provide generalized information on total WSC at the field scale. Due to their integrative nature, gravity data must be interpreted with great care in hydrological studies. However, gravimeters can serve as a novel measurement instrument for hydrology and the application of gravimeters especially designed to study open research questions in hydrology is recommended.show moreshow less
  • Zeitabhängigen Gravimetermessungen, die in der Geodäsie und der Geophysik eingesetzt werden, um Variationen des Erdschwerefelds zu messen, werden durch lokale Wasserspeicheränderungen beeinflusst und verursachen – aus dieser Perspektive – ein hydrologisches Störsignal in den Gravimetermessungen. Gleichzeitig bietet der Teil des Gravimetersignals, der durch Wasserspeicheränderungen hervorgerufen wird, das Potential wichtige Informationen über hydrologische Speicher zu gewinnen, da zwar Wasserspeicher eine grundlegende Zustandsgröße hydrologischer Systeme darstellt, jedoch ihre Quantifizierung mit einem hohen Maß an Unsicherheiten auf der Feldskala behaftet ist. Diese Studie untersucht die Beziehung zwischen zeitabhängigen Gravimetermessungen und Wasserspeicheränderungen, um die Gravimetermessungen von dem hydrologischen Störsignal zu bereinigen und um den Nutzen der Gravimetermessungen für die Hydrologie zu erkunden. Dies geschieht am Beispiel des Supraleitgravimeters (SG) des Geodätischen Observatoriums Wettzell in Deutschland. Ein 4DZeitabhängigen Gravimetermessungen, die in der Geodäsie und der Geophysik eingesetzt werden, um Variationen des Erdschwerefelds zu messen, werden durch lokale Wasserspeicheränderungen beeinflusst und verursachen – aus dieser Perspektive – ein hydrologisches Störsignal in den Gravimetermessungen. Gleichzeitig bietet der Teil des Gravimetersignals, der durch Wasserspeicheränderungen hervorgerufen wird, das Potential wichtige Informationen über hydrologische Speicher zu gewinnen, da zwar Wasserspeicher eine grundlegende Zustandsgröße hydrologischer Systeme darstellt, jedoch ihre Quantifizierung mit einem hohen Maß an Unsicherheiten auf der Feldskala behaftet ist. Diese Studie untersucht die Beziehung zwischen zeitabhängigen Gravimetermessungen und Wasserspeicheränderungen, um die Gravimetermessungen von dem hydrologischen Störsignal zu bereinigen und um den Nutzen der Gravimetermessungen für die Hydrologie zu erkunden. Dies geschieht am Beispiel des Supraleitgravimeters (SG) des Geodätischen Observatoriums Wettzell in Deutschland. Ein 4D Vorwärtsmodel mit einer räumlich genesteten Diskretisierungsdomäne wurde entwickelt, um die lokalen hydrologischen Masseneffekte auf Gravimetermessungen zu simulieren. Des Weiteren wurde ein intensives Messsystem am Geodätischen Observatorium Wettzell installiert, um die Wasserspeicheränderungen in allen relevanten Speicherkomponenten, also im dem Grundwasser, in der ungesättigten Zone und im Schneespeicher zu messen. Das Monitoringsystem beinhaltete auch einen wägbaren, monolithischen Lysimeter mit Matrixpotentialübertragung, der es uns ermöglichte, zum ersten Mal einen Lysimeter direkt mit einem Gravimeter zu vergleichen. Die Lysimetermessungen wurden in Kombination mit komplementären hydrologischen Beobachtungen und einem 1D-Modell verwendet, um die Wasserspeicheränderungen auf der Feldskala zu bestimmen. Die Gesamtwasserspeicheränderungen wurden bestimmt, Unsicherheiten abgeschätzt und der hydrologische Masseneffekt auf Gravimetermessungen berechnet. Schlussendlich wurde ein einfaches, konzeptionelles, hydrologisches Modell mittels der Zeitreihen von dem SG, Bodenfeuchte- und Grundwassermessungen kalibriert und evaluiert. Das Modell wurde durch einen “Split-Sample-Test” evaluiert und basierend auf unabhängig bestimmten Wasserspeicheränderungen bestimmt auf Grundlage der Lysimetermessungen validiert. Die Simulation des hydrologischen Masseneffektes auf Gravimetermessungen zeigte, dass Wasserspeicheränderungen von einem Meter Höhe entlang der Topographie, einen Erdschwereeffekt von 52 µGal hervorriefen, während in der Geodäsie im Allgemeinen die gleiche Wassermassenvariation in flachem Terrain eine Erdschwereeffekt von nur 42 µGal (Bouguer-Platte) hervorruft. Der Einflussradius der lokalen Wasserspeicheränderungen kann auf 1000 m begrenzt werden, und 50 % bis 80 % des lokalen hydrologischen Erdschweresignals wird in einem Radius von 50 m um den Gravimeter generiert. Wasserspeichervariationen in der Schneedecke, im Oberboden, dem ungesättigten Saprolith und im gelüfteten Aquifer, sind allesamt wichtige Größen der lokalen Wasserbilanz. Mit der Ausnahme von Schnee beeinflussen alle Speicheränderungen die Gravimetermessungen in derselben Größenordnung und sind daher für die Gravimetermessungen von Bedeutung. Ein Vergleich des lokalen hydrologischen Gravitationseffektes mit den SG Residuen zeigte sowohl ereignisbezogene als auch saisonalen Übereinstimmungen. Weiterhin zeigten die Ergebnisse jedoch auch die Grenzen bei der Bestimmung der gesamten lokalen Wasserspeichervariationen mithilfe hydrologischer Punktmessungen auf. Die Ergebnisse des Lysimeter-basierten Ansatzes zeigten, dass SG Residuen mehr noch, als bisher aufgezeigt, durch lokale Wasserspeicheränderungen hervorgerufen werden. Ein Vergleich der Resultate mit anderen Methoden, die in der Vergangenheit zur Korrektur zeitabhängiger Erdschwerebeobachtungen durch Bestimmung des lokalen hydrologischen Masseneffekte verwendet wurden, zeigte, dass die unabhängige Berechnung von Wasserspeicheränderungen durch Lysimetermessungen erheblich verbessert werden kann und dass diese somit eine verbesserte Methode zur Bestimmung des lokalen hydrologischen Erdschwereeffekts darstellt. Die Installation eines Lysimeters ist somit im Zusammenhang mit einer Reduzierung des hydrologischen Störsignals und an Standorten, wo zeitabhängige Erdschwerebeobachtungen für geophysikalische Studien, die über die lokale Hydrologie hinausgehen verwendet werden, zu empfehlen. Aus hydrologischer Sicht zeigte diese Studie, dass die Verwendung von zeitabhängigen Gravimetermessungen als Kalibrierungsdaten die Modellergebnisse im Vergleich zu hydrologischen Punktmessungen verbesserten. Auf Grund ihrer Fähigkeit, über verschiedene Speicherkomponenten und ein größeres Gebiet zu integrieren, bieten Gravimeter verallgemeinerte Informationen über die Gesamtwasserspeicherveränderungen auf der Feldskala. Diese integrative Eigenschaft macht es notwendig, Erdschweredaten in hydrologischen Studien mit großer Vorsicht zu interpretieren. Dennoch können Gravimeter der Hydrologie als neuartiges Messinstrument dienen und die Nutzung von Gravimetern, die speziell für die Beantwortung noch offener Forschungsfragen der Hydrologie entwickelt wurden wird hier empfohlen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Noah Angelo Benjamin Creutzfeldt
URN:urn:nbn:de:kobv:517-opus-48575
Supervisor(s):Andreas Güntner
Publication type:Doctoral Thesis
Language:English
Publication year:2010
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2010/10/29
Release date:2010/11/11
Tag:Hydrogeopyhsik; Supraleitender Gravimeter (SG); Wasserspeicheränderungen; hydrologische Modellierung; zeitabhängige Gravitationsvariation
Hydrogeophysics; hydrological monitoring and modelling; superconducting gravimeter (SG); temporal gravity variations; water storage changes
RVK - Regensburg classification:UT 2350
RVK - Regensburg classification:UT 4700
RVK - Regensburg classification:UT 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
External remark:MSC-Klassifikation: 86-05 , 83B05 , 83-05
The present work constitutes a cumulative dissertation. It includes four articles of internationally accredited scientific journals, with one being published, one in print, and two under review by the time the dissertation was submitted to the University of Potsdam. The publication of all four articles could be completed, by the time of the defense of the present thesis:

Creutzfeldt, B., A. Güntner, T. Klügel, and H. Wziontek (2008), Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany, Geophysics, 73(6), WA95-WA104
doi:10.1190/1.2992508

Creutzfeldt, B., A. Güntner, H. Thoss, B. Merz, and H. Wziontek (2010), Measuring the effect of local water storage changes on in-situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany, Water Resources Research, 46, W08531 doi:10.1029/2009WR008359


Creutzfeldt, B., A. Güntner, S. Vorogushyn, and B. Merz (2010), The benefits of gravimeter observations for modelling water storage changes at the field scale, Hydrol. Earth Syst. Sci. , 14, 1715-1730
doi:10.5194/hess-14-1715-2010

Creutzfeldt, B., A. Güntner, H. Wziontek, and B. Merz (2010), Reducing local hydrology from high precision gravity measurements: a lysimeter-based approach, Geophysical Journal International, 183(1), 178-187
doi:10.1111/j.1365-246X.2010.04742.x
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.