The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 54 of 2502
Back to Result List

Surface relief and bulk birefringence gratings in photo-sensitive polymer films

Realzeit Observierung der Entstehung von Volumen- und Oberflächengittern in photosensitiven Polymerfilmen mittels der Rasterkraftmikroskopie und Messung der Beugungseffizienz

  • This thesis is focused on a better understanding of the formation mechanism of bulk birefringence gratings (BBG) and a surface relief gratings (SRG) in photo-sensitive polymer films. A new set-up is developed enabling the in situ investigation how the polymer film is being structured during irradiation with modulated light. The new aspect of the equipment is that it combines several techniques such as a diffraction efficiency (DE) set-up, an atomic force microscope (AFM) and an optical set-up for controlled illumination of the sample. This enables the simultaneous acquiring and differentiation of both gratings (BBG and SRG), while changing the irradiation conditions in desired way. The dissertation is based on five publications. The first publication (I) is focused on the description of the set-up and interpretation of the measured data. A fine structure within the 1st-order diffraction spot is observed, which is a result of the inhomogeneity of the inscribed gratings. In the second publication (II) the interplay of BBG and SRG inThis thesis is focused on a better understanding of the formation mechanism of bulk birefringence gratings (BBG) and a surface relief gratings (SRG) in photo-sensitive polymer films. A new set-up is developed enabling the in situ investigation how the polymer film is being structured during irradiation with modulated light. The new aspect of the equipment is that it combines several techniques such as a diffraction efficiency (DE) set-up, an atomic force microscope (AFM) and an optical set-up for controlled illumination of the sample. This enables the simultaneous acquiring and differentiation of both gratings (BBG and SRG), while changing the irradiation conditions in desired way. The dissertation is based on five publications. The first publication (I) is focused on the description of the set-up and interpretation of the measured data. A fine structure within the 1st-order diffraction spot is observed, which is a result of the inhomogeneity of the inscribed gratings. In the second publication (II) the interplay of BBG and SRG in the DE is discussed. It has been found, that, dependent on the polarization of a weak probe beam, the diffraction components of the SRG and BBG either interfere constructively or destructively in the DE, altering the appearance of the intensity distribution within the diffracted spot. The third (III) and fourth (IV) publications describe the light-induced reconfiguration of surface structures. Special attention is payed to conditions influencing the erasure of topography and bulk gratings. This can be achieved via thermal treatment or illumination of the polymer film. Using the translation of the interference pattern (IP) in a controlled way, the optical erase speed is significantly increased. Additionally, a dynamic reconfigurable surface is generated, which could move surface attached objects by the continuous translation of the interference pattern during irradiation of the polymer films. The fifth publication (V) deals with the understanding of polymer deformation under irradiation with SP-IP, which is the only IP generating a half-period topography grating (compared to the period of the IP) on the photo-sensitive polymer film. This mechanism is used, e.g. to generate a SRG below the diffraction limit of light. It also represents an easy way of changing the period of the surface grating just by a small change in polarization angle of the interfering beams without adjusting the optical pass of the two beams. Additionally, complex surface gratings formed in mixed polarization- and intensity interference patterns are shown. I J. Jelken, C. Henkel and S. Santer, Applied Physics B, 125 (2019), 218 II J. Jelken, C. Henkel and S. Santer, Appl. Phys. Lett., 116 (2020), 051601 III J. Jelken and S. Santer, RSC Advances, 9 (2019), 20295 IV J. Jelken, M. Brinkjans, C. Henkel and S. Santer, SPIE Proceedings, 11367 (2020), 1136710 V J. Jelken, C. Henkel and S. Santer, Formation of Half-Period Surface Relief Gratings in Azobenzene Containing Polymer Films (submitted to Applied Physics B)show moreshow less
  • In dieser kumulativen Dissertation, basierend auf fünf Publikationen, geht es darum ein Verständnis über die grundlegenden Mechanismen zu entwickeln, welche hinter der Entstehung von Oberflächen- und Volumengittern in amorphen photo-sensitiven Polymerfilmen stehen. Hierzu wurde ein neuer Versuchsaufbau entwickelt, welcher in situ (d.h. während der Belichtung mit einem Interferenzgitter) Messungen der zeitlichen Entwicklung (Entstehung oder Löschung) von Volumen- als auch Oberflächengittern unabhängig voneinander ermöglicht. Dies stellt einen erheblichen Vorteil gegenüber dem gängigen Verfahren der Beugungseffizienzmessung dar, weil dort die Anteile der beiden Gitter durch aufwendige mathematische Behandlung voneinander getrennt werden müssen. Hierzu wurde ein Rasterkraftmikroskop (AFM, atomic force microscope) in einen optischen Aufbau zur Erzeugung eines Interferenzgitters, welches zur Belichtung des Polymerfilms benutzt wird, integriert. Zusätzlich wurde außerdem die Beugung eines Sondenstrahls an den entstehenden GitternIn dieser kumulativen Dissertation, basierend auf fünf Publikationen, geht es darum ein Verständnis über die grundlegenden Mechanismen zu entwickeln, welche hinter der Entstehung von Oberflächen- und Volumengittern in amorphen photo-sensitiven Polymerfilmen stehen. Hierzu wurde ein neuer Versuchsaufbau entwickelt, welcher in situ (d.h. während der Belichtung mit einem Interferenzgitter) Messungen der zeitlichen Entwicklung (Entstehung oder Löschung) von Volumen- als auch Oberflächengittern unabhängig voneinander ermöglicht. Dies stellt einen erheblichen Vorteil gegenüber dem gängigen Verfahren der Beugungseffizienzmessung dar, weil dort die Anteile der beiden Gitter durch aufwendige mathematische Behandlung voneinander getrennt werden müssen. Hierzu wurde ein Rasterkraftmikroskop (AFM, atomic force microscope) in einen optischen Aufbau zur Erzeugung eines Interferenzgitters, welches zur Belichtung des Polymerfilms benutzt wird, integriert. Zusätzlich wurde außerdem die Beugung eines Sondenstrahls an den entstehenden Gittern detektiert. Die erste Publikation (I) beschäftigt sich mit der grundsätzlichen Interpretation der mit diesem neuen Messaufbau erzielten Ergebnisse. Es wurde eine Feinstruktur in dem räumlichen Profil der ersten Beugungsordnung gemessen, deren Ursprung aus der Inhomogenität der erzeugten Gitter herrührt. In der zweiten Publikation (II) wird die Kopplung von Oberflächen- und Volumengitter in der aufgezeichneten Beugungseffizienz untersucht. Es wird gezeigt, dass, abhängig von der Polarisation des Sondierungsstrahls, diese Kopplung sowohl konstruktiv als auch destruktiv sein kann, was auch die in der ersten Publikation beschriebene Feinstruktur beeinflusst. Die dritte (III) und vierte (IV) Publikation beschäftigen sich mit dem dynamischen Umbau von Oberflächenstrukturen. Hierzu muss das erzeugte Oberflächengitter möglichst schnell wieder gelöscht werden können. Dies kann sowohl thermisch, als auch optisch erfolgen. Durch eine definierte Translation des Interferenzgitters konnte hier die optische Löschgeschwindigkeit signifikant gesteigert werden. Zum anderen wird auch die Möglichkeit des Transports oberflächenadsorbierter Objekte durch die Erzeugung einer dynamisch modulierten Oberfläche (mittels einer kontinuierlichen Translation des Interferenz- und dadurch des Oberflächengitters) aufgezeigt. Die Hypothese des Massentransports wird hierbei kritisch untersucht. Die fünften Publikation (V) widmet sich dem SP-Interferenzgitter, welches als einziges Gitter eine Periode der Oberflächenstruktur ausbildet, die der Hälfte der Periode des optischen Interferenzgitters entspricht. Diese Eigenschaft kann zum einen für die Erzeugung von Oberflächengittern unterhalb der optischen Auflösungsgrenze benutzt werden, zum anderen erlaubt sie die Periode der Oberflächenstruktur einfach zu ändern, indem die Beleuchtung zu einem anderen Interferenzgitter geschaltet wird. Zusätzlich wird auch die Erzeugung von komplexen Oberflächengittern durch Misch-Interferenzgitter (Mischung aus Polarisations- und Intensitäts-Interferenzgitter) diskutiert. I J. Jelken, C. Henkel and S. Santer, Applied Physics B, 125 (2019), 218 II J. Jelken, C. Henkel and S. Santer, Appl. Phys. Lett., 116 (2020), 051601 III J. Jelken and S. Santer, RSC Advances, 9 (2019), 20295 IV J. Jelken, M. Brinkjans, C. Henkel and S. Santer, SPIE Proceedings, 11367 (2020), 1136710 V J. Jelken, C. Henkel and S. Santer, Formation of Half-Period Surface Relief Gratings in Azobenzene Containing Polymer Films (eingereicht bei Applied Physics B)show moreshow less

Download full text files

  • SHA-512:65a4f5ac2942b11f2c2af907d4876ab013f066a351031e130e24219f0c44cf11b23437a7658f887b6eab1cb6c5e4ef028ebe95f772e364350e7679f7d33c7c3b

Export metadata

Metadaten
Author details:Joachim JelkenORCiD
URN:urn:nbn:de:kobv:517-opus4-483988
DOI:https://doi.org/10.25932/publishup-48398
Subtitle (English):in-situ probing and manipulation in real time
Reviewer(s):Marina GrenzerORCiD, Arri PriimägiORCiD
Supervisor(s):Svetlana Santer
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/10/07
Release date:2020/12/08
Tag:Azobenzol enthaltende Moleküle; Beugungseffizienz; Oberflächengitter; Photopolymer; Photostrukturierung von Polymerfilmen; Rasterkraftmikroskopie
Atomic Force Microscope; Surface Relief Grating (SRG); azobenzene containing molecules; diffraction efficiency; photo-structuring of polymer films; photosensitive Polymer; sub-diffraction gratings
Number of pages:xiv, 194, lxxxi
RVK - Regensburg classification:UM 3100, UH 6320
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.