The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 66 of 2502
Back to Result List

Identification of chloroplast translational feedback regulation and establishment of aptamer based mRNA purification to unravel involved regulatory factors

  • After endosymbiosis, chloroplasts lost most of their genome. Many former endosymbiotic genes are now nucleus-encoded and the products are re-imported post-translationally. Consequently, photosynthetic complexes are built of nucleus- and plastid-encoded subunits in a well-defined stoichiometry. In Chlamydomonas, the translation of chloroplast-encoded photosynthetic core subunits is feedback-regulated by the assembly state of the complexes they reside in. This process is called Control by Epistasy of Synthesis (CES) and enables the efficient production of photosynthetic core subunits in stoichiometric amounts. In chloroplasts of embryophytes, only Rubisco subunits have been shown to be feedback-regulated. That opens the question if there is additional CES regulation in embryophytes. I analyzed chloroplast gene expression in tobacco and Arabidopsis mutants with assembly defects for each photosynthetic complex to broadly answer this question. My results (i) confirmed CES within Rubisco and hint to potential translational feedbackAfter endosymbiosis, chloroplasts lost most of their genome. Many former endosymbiotic genes are now nucleus-encoded and the products are re-imported post-translationally. Consequently, photosynthetic complexes are built of nucleus- and plastid-encoded subunits in a well-defined stoichiometry. In Chlamydomonas, the translation of chloroplast-encoded photosynthetic core subunits is feedback-regulated by the assembly state of the complexes they reside in. This process is called Control by Epistasy of Synthesis (CES) and enables the efficient production of photosynthetic core subunits in stoichiometric amounts. In chloroplasts of embryophytes, only Rubisco subunits have been shown to be feedback-regulated. That opens the question if there is additional CES regulation in embryophytes. I analyzed chloroplast gene expression in tobacco and Arabidopsis mutants with assembly defects for each photosynthetic complex to broadly answer this question. My results (i) confirmed CES within Rubisco and hint to potential translational feedback regulation in the synthesis of (ii) cytochrome b6f (Cyt b6f) and (iii) photosystem II (PSII) subunits. This work suggests a CES network in PSII that links psbD, psbA, psbB, psbE, and potentially psbH expression by a feedback mechanism that at least partially differs from that described in Chlamydomonas. Intriguingly, in the Cyt b6f complex, a positive feedback regulation that coordinates the synthesis of PetA and PetB was observed, which was not previously reported in Chlamydomonas. No evidence for CES interactions was found in the expression of NDH and ATP synthase subunits of embryophytes. Altogether, this work provides solid evidence for novel assembly-dependent feedback regulation mechanisms controlling the expression of photosynthetic genes in chloroplasts of embryophytes. In order to obtain a comprehensive inventory of the rbcL and psbA RNA-binding proteomes (including factors that regulate their expression, especially factors involved in CES), an aptamer based affinity purification method was adapted and refined for the specific purification these transcripts from tobacco chloroplasts. To this end, three different aptamers (MS2, Sephadex ,and streptavidin binding) were stably introduced into the 3’ UTRs of psbA and rbcL by chloroplast transformation. RNA aptamer based purification and subsequent chip analysis (RAP Chip) demonstrated a strong enrichment of psbA and rbcL transcripts and currently, ongoing mass spectrometry analyses shall reveal potential regulatory factors. Furthermore, the suborganellar localization of MS2 tagged psbA and rbcL transcripts was analyzed by a combined affinity, immunology, and electron microscopy approach and demonstrated the potential of aptamer tags for the examination of the spatial distribution of chloroplast transcripts.show moreshow less
  • Nach der Endosymbiose wurde der größte Teil des Chloroplastengenoms in das Kerngenom transferiert. Die entsprechenden Genprodukte werden posttranslational wieder in die Chloroplasten importiert. Dementsprechend sind photosynthetische Proteinkomplexe aus plastidär- und kernkodierten Untereinheiten in definierter Stöchiometrie zusammengesetzt. In der einzelligen Grünalge Chlamydomonas ist die Translation von chloroplastenkodierten photosynthetischen Untereinheiten durch einen Rückkopplungsmechanismus in Abhängigkeit vom Assemblierungsstatus der entsprechenden Komplexe reguliert. Dieser „Control by Epistasy of Synthesis“ (CES) genannte Mechanismus erlaubt die effiziente Synthese von photosynthetischen Untereinheiten in den stöchiometrischen Mengen, die für die Assemblierung der Komplexe benötigt werden. In den Chloroplasten der Embryophyten wurde bisher nur die Translation von Rubisco als CES reguliert beschrieben. Daher stellt sich die Frage, ob derartige CES-Regulationen in Embryophyten auch in anderen PhotosynthesekomplexenNach der Endosymbiose wurde der größte Teil des Chloroplastengenoms in das Kerngenom transferiert. Die entsprechenden Genprodukte werden posttranslational wieder in die Chloroplasten importiert. Dementsprechend sind photosynthetische Proteinkomplexe aus plastidär- und kernkodierten Untereinheiten in definierter Stöchiometrie zusammengesetzt. In der einzelligen Grünalge Chlamydomonas ist die Translation von chloroplastenkodierten photosynthetischen Untereinheiten durch einen Rückkopplungsmechanismus in Abhängigkeit vom Assemblierungsstatus der entsprechenden Komplexe reguliert. Dieser „Control by Epistasy of Synthesis“ (CES) genannte Mechanismus erlaubt die effiziente Synthese von photosynthetischen Untereinheiten in den stöchiometrischen Mengen, die für die Assemblierung der Komplexe benötigt werden. In den Chloroplasten der Embryophyten wurde bisher nur die Translation von Rubisco als CES reguliert beschrieben. Daher stellt sich die Frage, ob derartige CES-Regulationen in Embryophyten auch in anderen Photosynthesekomplexen stattfinden. Um diese Frage zu beantworten, habe ich die chloroplastidäre Genexpression in Tabak- und Arabidopsismutanten mit Defekten in der Assemblierung photosynthetischer Komplexe untersucht. Meine Ergebnisse bestätigen (i) die bekannte CES Regulation von Rubisco und zeigen mögliche weitere assemblierungsabhängige Rückkopplungsregulationen in der Synthese des (ii) Cytochrom b6f (Cyt b6f) Komplexes sowie des (iii) Photosystems II (PSII). Insbesondere weisen meine Ergebnisse auf ein CES-Netzwerk hin, welches die Expressionen von psbD, psbA, psbB, psbE und wahrscheinlich auch psbH steuert und teilweise von der beschriebenen linearen CES-Kaskade in Chlamydomonas abweicht. Für die Synthese des Cyt b6f Komplexes wurde zudem eine positive Feedback-Regulation der Untereinheiten PetA und PetB beobachtet, die in Chlamydomonas nicht gezeigt wurde. Dagegen wurden für die NDH- und ATP Synthase-Komplexe keine Hinweise auf CES-Regulation in Embryophyten gefunden. Zusammenfassend zeigen meine Ergebnisse klare Belege für bisher unbekannte CES-Regulationen, welche die Expression von photosynthetischen Genen in Embryophyten steuern. Um das mRNA-Protein-Interaktom von rbcL und psbA zu bestimmen (einschließlich Faktoren, welche CES regulieren), wurde eine aptamer-basierte Affinitätsreinigungsmethode für die Anreicherung dieser Transkripte aus Tabakchloroplasten adaptiert und optimiert. Dazu wurden mittels Chloroplasten¬transformation drei verschiedene Aptamere (MS2, Sephadex- und Streptavidin-bindende Aptamere) stabil in den 3’UTR der Transkripte integriert. Die aptamer-basierte RNA-Aufreinigung und anschließende Chip-Analyse (RAP-Chip) zeigte die spezifische Anreicherung der psbA- bzw. rbcL-Transkripte. Die aktuell ausgeführte Massenspektrometrie zur Analyse der transkriptgebundenen Proteine soll potenziell regulatorische Faktoren identifizieren. Des Weiteren wurde die Lokalisation der MS2-markierten psbA- und rbcL-Transkripte innerhalb des Chloroplasten mittels Affinitäts¬immunologie und Elektronenmikroskopie untersucht und dabei gezeigt, dass die Aptamer-Markierung geeignet ist, um die Transkriptverteilung innerhalb von Organellen zu untersuchen.show moreshow less

Download full text files

  • SHA-512:60728c1f32b3d6e66dcee5e3c409e5a0dfdccbde74cae47992dfc34f46cdead549e99e055306e446bf03bbce5baec5cafe3bc91ac761da62eceafd5a4454315c

Export metadata

Metadaten
Author details:Rabea GhandourORCiD
URN:urn:nbn:de:kobv:517-opus4-482896
DOI:https://doi.org/10.25932/publishup-48289
translated title (German):Identifikation translationaler Rückkopplungsregulationen in Chloroplasten und Etablierung einer aptamer-basierten mRNA-Anreicherungsmethode zur Entschlüsselung der beteiligten regulatorischen Faktoren
Reviewer(s):Ralph BockORCiDGND, Christian Schmitz-LinneweberORCiDGND, Francis-André Wollman
Supervisor(s):Ralph Bock, Reimo Zoschke
Publication type:Doctoral Thesis
Language:English
Embargo date:2021/11/24
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/10/05
Release date:2020/11/24
Tag:Aptamer; Chloroplasten-Genexpression; Proteinkomplexassemblierung; Ribosome profiling; Translation; Translationsfeedbackregulation
Aptamers; Chloroplast gene expression; Protein complex assembly; Ribosome profiling; Translation; Translation feedback regulation
Number of pages:XIII, 173
RVK - Regensburg classification:WE 2401
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.