• Treffer 3 von 8
Zurück zur Trefferliste

The impact of DNA methylation on susceptibility to typ 2 diabetes in NZO mice

  • The development of type 2 diabetes (T2D) is driven by genetic as well as life style factors. However, even genetically identical female NZO mice on a high-fat diet show a broad variation in T2D onset. The main objective of this study was to elucidate and investigate early epigenetic determinants of type 2 diabetes. Prior to other experiments, early fat content of the liver (<55.2 HU) in combination with blood glucose concentrations (>8.8 mM) were evaluated as best predictors of diabetes in NZO females. Then, DNA methylome and transcriptome were profiled to identify molecular pathophysiological changes in the liver before diabetes onset. The major finding of this thesis is that alterations in the hepatic DNA methylome precede diabetes onset. Of particular interest were 702 differentially methylated regions (DMRs), of which 506 DMRs had genic localization. These inter-individual DMRs were enriched by fivefold in the KEGG pathway type 2 diabetes mellitus, independent of the level of gene expression, demonstrating an epigeneticThe development of type 2 diabetes (T2D) is driven by genetic as well as life style factors. However, even genetically identical female NZO mice on a high-fat diet show a broad variation in T2D onset. The main objective of this study was to elucidate and investigate early epigenetic determinants of type 2 diabetes. Prior to other experiments, early fat content of the liver (<55.2 HU) in combination with blood glucose concentrations (>8.8 mM) were evaluated as best predictors of diabetes in NZO females. Then, DNA methylome and transcriptome were profiled to identify molecular pathophysiological changes in the liver before diabetes onset. The major finding of this thesis is that alterations in the hepatic DNA methylome precede diabetes onset. Of particular interest were 702 differentially methylated regions (DMRs), of which 506 DMRs had genic localization. These inter-individual DMRs were enriched by fivefold in the KEGG pathway type 2 diabetes mellitus, independent of the level of gene expression, demonstrating an epigenetic predisposition toward diabetes. Interestingly, among the list of hepatic DMRs, eleven DMRs were associated with known imprinted genes in the mouse genome. Thereby, six DMRs (Nap1l5, Mest, Plagl1, Gnas, Grb10 and Slc38a4) localized to imprinting control regions, including five iDMRs that exhibited hypermethylation in livers of diabetes-prone mice. This suggests that gain of DNA methylation in multiple loci of the paternal alleles has unfavourable metabolic consequences for the offspring. Further, the comparative liver transcriptome analysis demonstrated differences in expression levels of 1492 genes related to metabolically relevant pathways, such as citrate cycle and fatty acid metabolism. The integration of hepatic transcriptome and DNA methylome indicated that 449 differentially expressed genes were potentially regulated by DNA methylation, including genes implicated in insulin signaling. In addition, liver transcriptomic profiling of diabetes-resistant and diabetes-prone mice revealed a potential transcriptional dysregulation of 17 hepatokines, in particular Hamp. The hepatic expression of Hamp was decreased by 52% in diabetes-prone mice, on account of an increase in DNA methylation of promoter CpG-118. Hence, HAMP protein levels were lower in mice prone to develop diabetes, which correlated to higher liver triglyceride levels.. In sum, the identified DNA methylation changes appear to collectively favor the initiation and progression of diabetes in female NZO mice. In near future, epigenetic biomarkers are likely to contribute to improved diagnosis for T2D.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sophie SaussenthalerORCiD
Gutachter*in(nen):Annette SchürmannORCiDGND, Gerhard Paul PüschelORCiDGND, Peter Kühnen
Betreuer*in(nen):Annette Schürmann
Publikationstyp:Dissertation
Sprache:Englisch
Jahr der Erstveröffentlichung:2021
Erscheinungsjahr:2021
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:22.09.2021
Datum der Freischaltung:14.10.2021
Freies Schlagwort / Tag:DNA methylation; HAMP; RNAseq; epigenetics; fatty liver; type 2 diabetes
Seitenanzahl:XIX, 150
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.