The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 93 of 3537
Back to Result List

Systematic Analysis of Machine Learning and Feature Selection Techniques for Prediction of the Kp Index

  • The Kp index is a measure of the midlatitude global geomagnetic activity and represents short-term magnetic variations driven by solar wind plasma and interplanetary magnetic field. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere and the radiation belts. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast Kp, based their inferences on the recent history of Kp and on solar wind measurements at L1. In this study, we systematically test how different machine learning techniques perform on the task of nowcasting and forecasting Kp for prediction horizons of up to 12 hr. Additionally, we investigate different methods of machine learning and information theory for selecting the optimal inputs to a predictive model. We illustrate how these methods can be applied to select the most important inputs to a predictive model of Kp and to significantly reduceThe Kp index is a measure of the midlatitude global geomagnetic activity and represents short-term magnetic variations driven by solar wind plasma and interplanetary magnetic field. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere and the radiation belts. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast Kp, based their inferences on the recent history of Kp and on solar wind measurements at L1. In this study, we systematically test how different machine learning techniques perform on the task of nowcasting and forecasting Kp for prediction horizons of up to 12 hr. Additionally, we investigate different methods of machine learning and information theory for selecting the optimal inputs to a predictive model. We illustrate how these methods can be applied to select the most important inputs to a predictive model of Kp and to significantly reduce input dimensionality. We compare our best performing models based on a reduced set of optimal inputs with the existing models of Kp, using different test intervals, and show how this selection can affect model performance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Irina S. ZhelayskayaORCiD, Ruggero VasileORCiD, Yuri Y. ShpritsORCiD, Claudia StolleORCiDGND, Jürgen MatzkaORCiDGND
DOI:https://doi.org/10.1029/2019SW002271
ISSN:1542-7390
Title of parent work (English):Space Weather: The International Journal of Research and Applications
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/30
Tag:Feature selection; Kp index; Machine learning; Predictive models; Validation
Volume:17
Issue:10
Number of pages:26
First page:1461
Last Page:1486
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.