The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 504
Back to Result List

Biogeochemistry of ferruginous sediments of Lake Towuti, Sulawesi, Indonesia

  • Ferruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth’s history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth’s early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistentlyFerruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth’s history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth’s early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistently anoxic. Intensive weathering of the ultramafic catchment feeds the lake with large amounts of iron(oxy)hydroxides while the runoff contains only little sulfate, leading to sulfate-poor (< 20 µM) lake water and anoxic ferruginous conditions below 130 m. Such conditions are analogous to the ferruginous water columns that persisted throughout much of the Archean and Proterozoic eons. Short (< 35 cm) sediment cores were collected from different water depths corresponding to different bottom water redox conditions. Also, a drilling campaign of the International Continental Scientific Drilling Program (ICDP) retrieved a 114 m long sediment core dedicated for geomicrobiological investigations from a water depth of 153 m, well below the depth of oxygen penetration at the time of sampling. Samples collected from these sediment cores form the fundament of this thesis and were used to perform a suite of biogeochemical and microbiological analyses. Geomirobiological investigations depend on uncontaminated samples. However, exploration of subsurface environments relies on drilling, which requires the use of a drilling fluid. Drilling fluid infiltration during drilling can not be avoided. Thus, in order to trace contamination of the sediment core and to identify uncontaminated samples for further analyses a simple and inexpensive technique for assessing contamination during drilling operations was developed and applied during the ICDP drilling campaign. This approach uses an aqeous fluorescent pigment dispersion commonly used in the paint industry as a particulate tracer. It has the same physical properties as conventionally used particulate tracers. However, the price is nearly four orders of magnitude lower solving the main problem of particulate tracer approaches. The approach requires only a minimum of equipment and allows for a rapid contamination assessment potentially even directly on site, while the senstitivity is in the range of already established approaches. Contaminated samples in the drill core were identified and not included for further geomicrobiological investigations. Biogeochemical analyses of short sediment cores showed that Lake Towutis sediments are strongly depleted in electron acceptors commonly used in microbial organic matter mineralization (i.e. oxygen, nitrate, sulfate). Still, the sediments harbor high microbial cell densities, which are a function of redox conditions of Lake Towuti’s bottom water. In shallow water depths bottom water oxygenation leads to a higher input of labile organic matter and electron acceptors like sulfate and iron, which promotes a higher microbial abundance. Microbial analyses showed that a versatile microbial community with a potential to perform metabolisms related to iron and sulfate reduction, fermentation as well as methanogenesis inhabits Lake Towuti’s surface sediments. Biogeochemical investigations of the upper 12 m of the 114 m sediment core showed that Lake Towuti’s sediment is extremely rich in iron with total concentrations up to 2500 µmol cm-3 (20 wt. %), which makes it the natural sedimentary environment with the highest total iron concentrations studied to date. In the complete or near absence of oxygen, nitrate and sulfate, organic matter mineralization in ferruginous sediments would be expected to proceed anaerobically via the energetically most favorable terminal electron acceptors available - in this case ferric iron. Astonishingly, however, methanogenesis is the dominant (>85 %) organic matter mineralization process in Lake Towuti’s sediment. Reactive ferric iron known to be available for microbial iron reduction is highly abundant throughout the upper 12 m and thus remained stable for at least 60.000 years. The produced methane is not oxidized anaerobically and diffuses out of the sediment into the water column. The proclivity towards methanogenesis, in these very iron-rich modern sediments, implies that methanogenesis may have played a more important role in organic matter mineralization thoughout the Precambrian than previously thought and thus could have been a key contributor to Earth’s early climate dynamics. Over the whole sequence of the 114 m long sediment core siderites were identified and characterized using high-resolution microscopic and spectroscopic imaging together with microchemical and geochemical analyses. The data show early diagenetic growth of siderite crystals as a response to sedimentary organic matter mineralization. Microchemical zoning was identified in all siderite crystals. Siderite thus likely forms during diagenesis through growth on primary existing phases and the mineralogical and chemical features of these siderites are a function of changes in redox conditions of the pore water and sediment over time. Identification of microchemical zoning in ancient siderites deposited in the Precambrian may thus also be used to infer siderite growth histories in ancient sedimentary rocks including sedimentary iron formations.show moreshow less
  • Während des Präkambriums und damit während des Großteils der Erdgeschichte, zeichneten sich die Ozeane durch ihren hohen Eisengehalt aus. Sowohl die Remineralisierung von organischem Material, als auch die Diagenese in den Sedimenten, die in den frühen Ozeanen der Erde abgelagert wurden, hatte höchstwahrscheinlich bedeutende Auswirkungen auf die globalen biogeochemischen Stoffkreisläufe. Unser Verständnis des Abbaus von organischem Material in eisenhaltigen Sedimenten ist jedoch sehr begrenzt, da moderne Analogsysteme extrem selten sind und bis heute nicht erforscht wurden. Der Towutisee auf der Insel Sulawesi in Indonesien ist ein solches modernes Analogsystem und Ziel dieser Doktorarbeit war es, die Raten und Pfade des Abbaus von organischem Material in den modernen eisenhaltigen Sedimenten des Towutisees zu erforschen. Der Towutisee ist der größte tektonische See in Südostasien und ist von mafischen und ultramafischen Gesteinen des Ost-Sulawesi-Ophioliten umgeben. Er hat eine maximale Wassertiefe von 203 m und ist schwachWährend des Präkambriums und damit während des Großteils der Erdgeschichte, zeichneten sich die Ozeane durch ihren hohen Eisengehalt aus. Sowohl die Remineralisierung von organischem Material, als auch die Diagenese in den Sedimenten, die in den frühen Ozeanen der Erde abgelagert wurden, hatte höchstwahrscheinlich bedeutende Auswirkungen auf die globalen biogeochemischen Stoffkreisläufe. Unser Verständnis des Abbaus von organischem Material in eisenhaltigen Sedimenten ist jedoch sehr begrenzt, da moderne Analogsysteme extrem selten sind und bis heute nicht erforscht wurden. Der Towutisee auf der Insel Sulawesi in Indonesien ist ein solches modernes Analogsystem und Ziel dieser Doktorarbeit war es, die Raten und Pfade des Abbaus von organischem Material in den modernen eisenhaltigen Sedimenten des Towutisees zu erforschen. Der Towutisee ist der größte tektonische See in Südostasien und ist von mafischen und ultramafischen Gesteinen des Ost-Sulawesi-Ophioliten umgeben. Er hat eine maximale Wassertiefe von 203 m und ist schwach thermisch stratifiziert. Bis zu einer Tiefe von 70 m herrschen oxische Bedingungen, während die Wassersäule unterhalb von 130 m permanent anoxisch ist. Intensive Verwitterungsprozesse des ultramafischen Einzugsgebietes führen zu einem hohen Eintrag von Eisen(oxy)hydroxiden, während der Oberflächenabfluss nur wenig Sulfat enthält. Die Konzentrationen von Sulfat in der Wassersäule sind daher außergewöhnlich gering (< 20µM). Diese physikochemischen Verhältnisse sind analog zu denen der Ozeane des Archaikums und des Proterozoikums. Kurze (< 35 cm) Sedimentkerne wurden von verschiedenen Wassertiefen und unterschiedlichen Redox-Bedingungen des Bodenwassers entnommen. Darüber hinaus, wurde, im Zuge einer Bohrkampagne des International Continental Scientific Drilling Programs (ICDP) am Towutisee, ein 114 m langer Sedimentkern aus einer Wassertiefe von 153m, also deutlich unterhalb des Sauerstoffgradienten, erbohrt. Dieser war ausschließlich für geomikrobiologische Probenahmen und Untersuchungen vorgesehen. Die Proben, die aus diesen Sedimentkernen entnommen wurden, bilden das Fundament dieser Doktorarbeit und wurden für biogeochemische und mikrobiologische Untersuchungen verwendet. Unkontaminierte Proben sind für geomikrobiologische Untersuchungen unabdingbar. Das Erforschen von Gebieten unterhalb der Oberfläche ist jedoch auf Bohrungen angewiesen, welche wiederum den Einsatz einer Bohrspülung erfordern. Leider ist es unvermeidlich, dass diese im Zuge des Bohrprozesses in den erbohrten Sedimentkern eindringen. Die einzige Möglichkeit unkontaminierte Proben zu gewinnen ist es daher, den Grad der Kontamination des Bohrkerns nachzuverfolgen und unkontaminierte Proben für weitere Analysen zu identifizieren. Dazu wurde im Zuge dieser Doktorarbeit eine einfache und kostengünstige Methode zur Kontaminationskontrolle während Bohroperationen entwickelt und während der ICDP Bohrkampagne auf dem Towutisee angewandt. Als Tracer kam eine Farbe zum Einsatz, deren physikalische Eigenschaften denen von partikulären Tracern ähnelt. Der Preis dieser Farbe ist im Vergleich zu bisher verwendeten partikulären Tracern, jedoch vier Größenordnungen geringer und löst damit das Hauptproblem dieser Tracer. Die Methode benötigt nur ein Mindestmaß an Equipment und ermöglicht eine schnelle Identifizierung von Kontaminationen, möglicherweise sogar vor Ort. Die Sensitivität der Methode ist im Bereich von etablierten Kontaminationskontrollen. Kontaminierte Proben des erbohrten Sedimentkerns wurden mit dieser Methode identifiziert und nicht für weitere geomikrobiologische Untersuchungen verwendet. Biogeochemische Analysen der Kurzkerne zeigen, dass die Sedimente des Towutisees sehr arm an Elektronenakzeptoren sind, die für den mikrobiellen Abbau von organischem Material verwendet werden (d.h. Sauerstoff, Nitrat und Sulfat). Nichtsdestotrotz zeichnen sich die Sedimente des Towutisees durch hohe Zellzahlen aus, die von den Redox-Bedingungen des Bodenwassers abhängig sind. In niedrigen Wassertiefen führt oxygeniertes Bodenwasser zu einem erhöhten Eintrag von labilem organischen Material sowie Elektronenakzeptoren wie Eisen und Sulfat, wodurch hohe Zellzahlen resultieren. Mikrobiologische Analysen zeigen, dass die Sedimente des Towutisees durch eine vielseitige, mikrobielle Gemeinschaft bevölkert werden, die in der Lage ist, Stoffwechsel, wie Eisenreduktion, Sulfatreduktion, Fermentation sowie Methanogenese auszuführen. Biogeochemische Untersuchungen der oberen 12 m des 114 m langen Sedimentkerns zeigen, dass die Sedimente des Towutisees mit 2500 µM cm-3 extrem hohe Eisengehalte (20 Gew. %) aufweisen und damit das eisenreichste natürliche sedimentäre System sind, welches bisher erforscht wurde. Nach unserem bisherigen Verständnis über biogeochemische Stoffkreisläufe sollte, in Abwesenheit von Sauerstoff, Nitrat oder Sulfat, organisches Material über den energetisch günstigsten verfügbaren Elektronenakzeptoren abgebaut werden – in dem Fall Eisen (III). Erstaunlicherweise jedoch, ist Methanogenese der dominante (> 85 %) Remineralisierungsprozess in den Sedimenten des Towutisees. Mikrobiell theoretisch verfügbares reaktives Eisen (III) hingegen bleibt stabil über die oberen 12 m des Sedimentkerns und damit über mehr als 60.000 Jahre. Produziertes Methan wird nicht anaerob oxidiert und diffundiert aus dem Sediment in die Wassersäule. Die Dominanz von Methanogenese in diesen eisenreichen Sedimenten impliziert, dass dieser Prozess im Präkambrium vermutlich eine viel bedeutendere Rolle in der Remineralisierung von organischem Material eingenommen hat, als bisher angenommen. Methan, als bedeutendes Treibhausgas, war demnach möglicherweise ein wichtiger Regulator des Klimas in der frühen Erdgeschichte.show moreshow less

Download full text files

  • SHA-512:a8dfa606c8c5e86583f79e99617649fed63b7d56ff9f94969e3e0b4d81aafc91ac0d3e91436bf238aa29d0728d4a9569cbd72d04164125b97589768b61f00662

Export metadata

Metadaten
Author details:André FrieseORCiD
URN:urn:nbn:de:kobv:517-opus4-475355
DOI:https://doi.org/10.25932/publishup-47535
translated title (German):Biogeochemie eisenreicher Sedimente des Lake Towuti, Sulawesi, Indonesien
Supervisor(s):Jens Kallmeyer
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/06/26
Release date:2020/09/17
Tag:Biogeochemie; Frühe Erdgeschichte; Geomikrobiologie; Kontaminationskontrolle; Mikrobieller Abbau von organischen Material
Biogeochemistry; Contamination Control; Early Earth; Geomicrobiology; Organic matter mineralization
Number of pages:xxiv, 233
RVK - Regensburg classification:WF 2100, TH 4560
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.