The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 77 of 504
Back to Result List

Structure and petrophysical properties of the Southern Chile subduction zone along 38.25°S from seismic data

Struktur und petrophysikalische Eigenschaften der südlichen Chile-Subduktionszone bei 38.25°S anhand seismischer Daten

  • Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P-Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P- and S-velocities, to infer the composition and rocks within the subduction zone. Finally, an image of the subduction zone is given, jointly interpreting the results from this work with results from other studies. The Chilean seismogenic coupling zone at 38.25°S shows a continental crust with highly reflective horizontal, as well as (steep) dipping events. Among them, the Lanalhue Fault Zone (LFZ), which is interpreted to be east-dipping, is imaged to very shallow depths. Some steep reflectors are observed for the first time, for example one near the coast, related to high seismicity and another one near the LFZ. Steep shallow reflectivity towards the volcanic arc could be related to a steep west-dipping reflector interpreted as fluids and/or melts, migrating upwards due to material recycling in the continental mantle wedge. The high resolution of the S-velocity model in the first kilometres allowed to identify several sedimentary basins, characterized by very low P- and S-velocities, high Poisson's ratios and possible steep reflectivity. Such high Poisson's ratios are also observed within the oceanic crust, which reaches the seismogenic zone hydrated due to bending-related faulting. It is interpreted to release water until reaching the coast and under the continental mantle wedge. In terms of seismic velocities, the inferred composition and rocks in the continental crust is in agreement with field geology observations at the surface along the proflle. Furthermore, there is no requirement to call on the existence of measurable amounts of present-day fluids above the plate interface in the continental crust of the Coastal Cordillera and the Central Valley in this part of the Chilean convergent margin. A large-scale anisotropy in the continental crust and upper mantle, previously proposed from magnetotelluric studies, is proposed from seismic velocities. However, quantitative studies on this topic in the continental crust of the Chilean seismogenic zone at 38.25°S do not exist to date.show moreshow less
  • Innerhalb des interdisziplinären Projektes TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) wurden aktive und passive Quelldaten zweier seismischer Experimente verwendet, um die strukturellen und petrophysikalischen Eigenschaften (wie zum Beispiel P- und S-Geschwindigkeiten, Poissonsverh ältnisse, Porendruck, Dichte und Flüssigkeitsmenge) in der chilenischen seismogenen Kopplungszone bei 38.25°S darzustellen und zu identifizieren, wo im Jahr 1960 das stärkste je gemessene Erdbeben (Mw 9.5) stattgefunden hat. Zwei Modelle für S-Wellengeschwindigkeiten, basierend auf Techniken für Laufzeiten und Rausch-Tomographie, wurden mit einem existierenden Geschwindigkeitsmodell zu einem 2D-Modell für S-Wellengeschwindigkeiten verbunden, welches der Vorteile der einzelnen Modellkomponenten vereint. Im nächsten Schritt wurden verschiedene pre-stack und post-stack Techniken der Tiefenmigration verwendet, um Bilder der P- und S-Reflektivität zu erhalten. Von diesen Techniken hat das jüngste Schema der pre-stackInnerhalb des interdisziplinären Projektes TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) wurden aktive und passive Quelldaten zweier seismischer Experimente verwendet, um die strukturellen und petrophysikalischen Eigenschaften (wie zum Beispiel P- und S-Geschwindigkeiten, Poissonsverh ältnisse, Porendruck, Dichte und Flüssigkeitsmenge) in der chilenischen seismogenen Kopplungszone bei 38.25°S darzustellen und zu identifizieren, wo im Jahr 1960 das stärkste je gemessene Erdbeben (Mw 9.5) stattgefunden hat. Zwei Modelle für S-Wellengeschwindigkeiten, basierend auf Techniken für Laufzeiten und Rausch-Tomographie, wurden mit einem existierenden Geschwindigkeitsmodell zu einem 2D-Modell für S-Wellengeschwindigkeiten verbunden, welches der Vorteile der einzelnen Modellkomponenten vereint. Im nächsten Schritt wurden verschiedene pre-stack und post-stack Techniken der Tiefenmigration verwendet, um Bilder der P- und S-Reflektivität zu erhalten. Von diesen Techniken hat das jüngste Schema der pre-stack Linienzug-Tiefenmigration die erkenntnisreichtsen Ergebnisse geliefert. Darauf aufbauend erlauben synthetische Seismogramme, welche die Reflektivitätsmethode verwenden, durch Eingabe der synthetischen 1-D P- und S-Geschwindigkeiten, auf die Komposition und auf Gesteine in der Subduktionszone rückzuschlie ÿen. Schlieÿlich wird ein Bild der Subduktionszone gezeigt, welche die Ergebnisse dieser Arbeit im Zusammenhang mit weiteren Studien interpretiert. Die chilenische seismogene Kopplungszone bei 38.25°S zeigt eine kontinentale Kruste mit sowohl hochgradig reflektierenden horizontalen als auch (steil) geneigten Strukturen. Unter diesen ist die Lanalhue-Bruchzone (LFZ), welche östlich abtaucht, auf sehr flache Tiefen abgebildet. Einige steile Reflektoren wurden zum ersten Mal beobachtet, zum Beispiel nahe der Küste verbunden mit hoher Seismizität, und nahe der LFZ. Steile oberflächliche Reflektivität hin zum vulkanischen Bogen konnten mit einem steilen westlich abtauchenden Reflektor verbunden werden. Dieser besteht wahrscheinlich aus Flüssigkeit oder geschmolzenem Material, welches sich durch Materialrecycling im kontinentalen Mantelkeil aufwärts bewegt. Die hohe Auflösung des S-Geschwindigkeitsmodells in den ersten Kilometern erlaubte es, mehrere sedimentäre Becken zu identifizieren, die sich durch sehr niedrige P- und S-Geschwindigkeiten, hohe Poissonsverhältinesse und mögliche steile reflektivität auszeichnen. Solch hohen Poissonverhältinesse wurden auch in der ozeanischen Kruste beobachtet, welche die seismogene Zone durch krümmungsverursachte Abbrüche hydriert erreicht. Das Wasser wird dabei an der Küste und unter dem kontinentalen Mantelkeil freigesetzt. Mit Hinsicht auf seismische Geschwindigkeiten stimmen die hergeleitete Komposition und Gesteinsverteilung in der kontinentalen Kruste mit geologischen Feldbeobachtungen an der Oberfläche des Profils überein. Des Weiteren zeigt sich keine Notwendigkeit für die Existenz von messbaren Mengen an gegenwärtigen Flüssigkeiten über der Plattengrenze in der kontinentalen Kruste der küstennahen Kordilleren und dem Zentraltal in diesem Teil der chilenischen Konvergenzspanne. Anhand der seismischen Geschwindigkeiten wird eine groÿskalige Anisotropie in der kontinentalen Kruste und im oberen Mantel vorgeschlagen, wie schon zuvor durch magnetotellurische Studien. Jedoch existieren bis heute keine Studien zu diesem Thema für die kontinentale Kruste der chilenische seismogenen Zone bei 38.25°S.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Catalina RamosORCiDGND
URN:urn:nbn:de:kobv:517-opus4-409183
Supervisor(s):Michael H. Weber
Publication type:Doctoral Thesis
Language:English
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/01/24
Release date:2018/04/11
Tag:Reflexionsseismik; Südamerika; aktive Quelldaten; seismische Tomographie; seismogene Kopplungszone; synthetische Seismogramme
South America; active source data; reflection seismics; seismic tomography; seismogenic coupling zone; synthetic seismograms
Number of pages:xvi, 111
RVK - Regensburg classification:UT 2500, TP 8875
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.