The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 59 of 56939
Back to Result List

Polymeric objects switchable between two shapes

  • As the ongoing trend of developing smart materials that can reversibly switch geometry stimulated by environmental control addressed increasing attention in many research fields, especially for biomedical or soft robotic applications. Shape-memory polymers (SMPs), which can change shape, stiffness, size, and structure when exposed to an external stimulus, are intensively explored as encouraging material candidates for achieving multifunctionality, and for miniaturizing into micro-components to expand the applications. Besides, the geometrical design has gained growing attention for creating engineering applications, such as bi-stable mechanisms, and has the potential to be explored by implementing SMP for new functions. In this context, this thesis aimed to develop smart micro-/nano-objects based on SMP and explore new functions by geometrical design using SMP. Here, two types of stimuli-responsive objects capable of one-way temperature-memory effect (TME) or free-standing reversible actuation e.g., micro/nanofibers (i) andAs the ongoing trend of developing smart materials that can reversibly switch geometry stimulated by environmental control addressed increasing attention in many research fields, especially for biomedical or soft robotic applications. Shape-memory polymers (SMPs), which can change shape, stiffness, size, and structure when exposed to an external stimulus, are intensively explored as encouraging material candidates for achieving multifunctionality, and for miniaturizing into micro-components to expand the applications. Besides, the geometrical design has gained growing attention for creating engineering applications, such as bi-stable mechanisms, and has the potential to be explored by implementing SMP for new functions. In this context, this thesis aimed to develop smart micro-/nano-objects based on SMP and explore new functions by geometrical design using SMP. Here, two types of stimuli-responsive objects capable of one-way temperature-memory effect (TME) or free-standing reversible actuation e.g., micro/nanofibers (i) and microcuboids (ii) at different aspects were explored. At first, it was hypothesized that the advanced atomic force microscopy (AFM) platform can be established to study individual polymeric micro-/nanofibers (i) in terms of incorporation and characterization of a reversible shape-memory actuation capability. Crystallizable material was chosen for preparing the fibers and the molecular alignment within the fibers among different diameters will influence the crystallization-induced elongation during cooling that determined the reversible effect. For the second type, microcuboids (ii), it was hypothesized that a programming and quantification approach can be developed to enable the realization and characterization of a one-way micro-TME and micro-shape-memory polymer actuation (SMPA) in microcuboids. The responsive temperature of one-way shape transformation can be tuned by programming temperature (Tp) and the separation temperature (Tsep) for post-programming can influence the actuation. Finally, a geometrical design with bi-stability was combined with SME to create new functions of shape actuation. It was hypothesized that the predicted bi-stable or mono-stable structures can be achieved with the aid of digital fabrication methods. Using shape-memory effect (SME), the alteration of bi-stable and mono-stable can initiate shape transformation with a larger magnitude and higher energy output. In the first part, the method to quantify the reversible SMPA of a single micro/nano crystallizable fiber with geometry change during the actuation was explored. Electrospinning was used to prepare poly (ε-caprolactone) (PCL) micro/nanofiber with different diameters, which were fixed by UV glue and crosslinked on the structured silicon wafer. Using AFM, the programming, as well as the observation of recovery and reversible displacement of the fiber, were performed by vertical three-point bending at the free suspended part. A plateau tip was chosen to achieve stable contact and longer working distance for performing larger deformation, enabling intensified reversible SMPA of single fibers. In this way, programming strains of 39 ± 1% or 46 ± 1% were realized for fiber with a diameter of 1 ± 0.2 µm and 300 ± 50 nm, which were bent at 80 °C and fixed at 10 °C. Values for the reversible elongation of εrev = 3.4 ± 0.1% and 10.5 ± 0.1% were obtained for a single micro and nanofiber respectively between 10 and 60 °C. The higher actuation effect observed for nanofiber demonstrated that the highly compact and oriented crystallites in nanofibers, which determined the pronounced εrev compared to the thick microfibers. Besides, a stable reversible actuation of a nanofiber can be tracked by AFM tip up to 10 cycles, indicating a sustainable application can be achieved on the fiber actuators. The findings obtained for cPCL micro-/nano-fibers will help design and evaluate the next generation polymeric microactuators or micromanipulators. The second part of the thesis studies the shape-memory effect (SME) of a single individual SMP micro-object by controlling deformation temperatures during programming and actuation temperatures during reversible change. In this work, microcuboids of crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) elastomers with 18 wt% vinyl acetate (VA) contents were successfully prepared by template-based replication from polydimethylsiloxane (PDMS) mold. The micro-TME and micro-SMPA were observed and studied based on micro-geometry change using optical microscopy (OM) and AFM. Different switching temperatures of shape recovery were achieved from 55 °C to 86 °C by tuning Tp from 55 °C to 100 °C, indicating a successful implementation of micro-TME on individual microcuboid. For micro-SMPA functionalization, microcuboids were deformed by compression at 100 °C and the change in single particle height was monitored during cyclic heating and cooling between various Tseps from 60 °C to 85 °C and 20 °C. The micro-SMPA on a single microcuboid was achieved with a reversible strain in the range of 2 to 7%, whereby higher compression ratio CR and Tsep induced prominent reversible strain. The results achieved in this work demonstrated the successful functionalization of microcuboids with different SMEs by controlling temperatures during programming and actuation processes. Based on these achievements, such micro-objects can be further designed as on demand switchable microactuators or release systems with adjustable working temperatures. In the last part of the work, a new function of shape-memory polymeric bi-stable 3D structured film was designed and fabricated. The SME and geometrical design of compliant mechanics were merged to enable switching between bi-stable and mono-stable states, which generate snap movement that mimics the Venus flytrap. A truncated tetrahedron structure with a slope angle as a tunable parameter to alter the bi-stability was chosen for the study to combine with SME. It was anticipated that the structured film designed with a slope angle of 30° exhibited mono-stable behavior, and such a structure with a slope angle of 45° exhibited bi-stable behavior. Then the structured SMP film of designed mono-stable shape was successfully fabricated using soft lithography based on 3D printed master molds supported from digital manufacturing. The structured mold was also used in programming the SMP film into the structure with a higher slope angle to attain bi-stability. Finally, the switching between bi-stable and mono-stable states was successfully realized using SME, which introduces snapping movement triggered by heat. The implementation of compliant mechanisms by the SME increased the magnitude of thermally induced reconfiguration without additional external force. To sum up, the results of the thesis support the development of smart objects capable of one-way micro-TME, free-standing reversible actuation, or bi-stability mediated shape-memory reconfiguration. Electrospinning and template-based method were used for fabrication with good control of geometry and low size dispersity. Microscopy methods especially the AFM platform with decent sensitivity was developed for implementation as well as characterization of SME on individual micro-/nanoobjects. Implementation of bi-stability improves the shape transformation amplitude of thermally triggered SMP. These findings can give novel insights for designing polymer-based actuators or soft robotics.show moreshow less
Metadaten
Author details:Yue LiuORCiDGND
Reviewer(s):Andreas LendleinORCiDGND, Hu JinlianORCiDGND, Jason PatrickORCiD
Supervisor(s):Andreas Lendlein
Publication type:Doctoral Thesis
Language:English
Year of first publication:2022
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/12/14
Release date:2022/01/25
Tag:atomic force microscopy; compliant mechanism; shape-memory polymer
Number of pages:xv, 73
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.