• search hit 4 of 281
Back to Result List

A software framework for GPU-based geo-temporal visualization techniques

Ein Software-Framework für GPU-basierte räumlich-zeitliche Visualisierungstechniken

  • Spatio-temporal data denotes a category of data that contains spatial as well as temporal components. For example, time-series of geo-data, thematic maps that change over time, or tracking data of moving entities can be interpreted as spatio-temporal data. In today's automated world, an increasing number of data sources exist, which constantly generate spatio-temporal data. This includes for example traffic surveillance systems, which gather movement data about human or vehicle movements, remote-sensing systems, which frequently scan our surroundings and produce digital representations of cities and landscapes, as well as sensor networks in different domains, such as logistics, animal behavior study, or climate research. For the analysis of spatio-temporal data, in addition to automatic statistical and data mining methods, exploratory analysis methods are employed, which are based on interactive visualization. These analysis methods let users explore a data set by interactively manipulating a visualization, thereby employing theSpatio-temporal data denotes a category of data that contains spatial as well as temporal components. For example, time-series of geo-data, thematic maps that change over time, or tracking data of moving entities can be interpreted as spatio-temporal data. In today's automated world, an increasing number of data sources exist, which constantly generate spatio-temporal data. This includes for example traffic surveillance systems, which gather movement data about human or vehicle movements, remote-sensing systems, which frequently scan our surroundings and produce digital representations of cities and landscapes, as well as sensor networks in different domains, such as logistics, animal behavior study, or climate research. For the analysis of spatio-temporal data, in addition to automatic statistical and data mining methods, exploratory analysis methods are employed, which are based on interactive visualization. These analysis methods let users explore a data set by interactively manipulating a visualization, thereby employing the human cognitive system and knowledge of the users to find patterns and gain insight into the data. This thesis describes a software framework for the visualization of spatio-temporal data, which consists of GPU-based techniques to enable the interactive visualization and exploration of large spatio-temporal data sets. The developed techniques include data management, processing, and rendering, facilitating real-time processing and visualization of large geo-temporal data sets. It includes three main contributions: - Concept and Implementation of a GPU-Based Visualization Pipeline. The developed visualization methods are based on the concept of a GPU-based visualization pipeline, in which all steps -- processing, mapping, and rendering -- are implemented on the GPU. With this concept, spatio-temporal data is represented directly in GPU memory, using shader programs to process and filter the data, apply mappings to visual properties, and finally generate the geometric representations for a visualization during the rendering process. Data processing, filtering, and mapping are thereby executed in real-time, enabling dynamic control over the mapping and a visualization process which can be controlled interactively by a user. - Attributed 3D Trajectory Visualization. A visualization method has been developed for the interactive exploration of large numbers of 3D movement trajectories. The trajectories are visualized in a virtual geographic environment, supporting basic geometries such as lines, ribbons, spheres, or tubes. Interactive mapping can be applied to visualize the values of per-node or per-trajectory attributes, supporting shape, height, size, color, texturing, and animation as visual properties. Using the dynamic mapping system, several kind of visualization methods have been implemented, such as focus+context visualization of trajectories using interactive density maps, and space-time cube visualization to focus on the temporal aspects of individual movements. - Geographic Network Visualization. A method for the interactive exploration of geo-referenced networks has been developed, which enables the visualization of large numbers of nodes and edges in a geographic context. Several geographic environments are supported, such as a 3D globe, as well as 2D maps using different map projections, to enable the analysis of networks in different contexts and scales. Interactive filtering, mapping, and selection can be applied to analyze these geographic networks, and visualization methods for specific types of networks, such as coupled 3D networks or temporal networks have been implemented. As a demonstration of the developed visualization concepts, interactive visualization tools for two distinct use cases have been developed. The first contains the visualization of attributed 3D movement trajectories of airplanes around an airport. It allows users to explore and analyze the trajectories of approaching and departing aircrafts, which have been recorded over the period of a month. By applying the interactive visualization methods for trajectory visualization and interactive density maps, analysts can derive insight from the data, such as common flight paths, regular and irregular patterns, or uncommon incidents such as missed approaches on the airport. The second use case involves the visualization of climate networks, which are geographic networks in the climate research domain. They represent the dynamics of the climate system using a network structure that expresses statistical interrelationships between different regions. The interactive tool allows climate analysts to explore these large networks, analyzing the network's structure and relating it to the geographic background. Interactive filtering and selection enables them to find patterns in the climate data and identify e.g. clusters in the networks or flow patterns.show moreshow less
  • Räumlich-zeitliche Daten sind Daten, welche sowohl einen Raum- als auch einen Zeitbezug aufweisen. So können beispielsweise Zeitreihen von Geodaten, thematische Karten die sich über die Zeit verändern, oder Bewegungsaufzeichnungen von sich bewegenden Objekten als räumlich-zeitliche Daten aufgefasst werden. In der heutigen automatisierten Welt gibt es eine wachsende Anzahl von Datenquellen, die beständig räumlich-zeitliche Daten generieren. Hierzu gehören beispielsweise Verkehrsüberwachungssysteme, die Bewegungsdaten von Menschen oder Fahrzeugen aufzeichnen, Fernerkundungssysteme, welche regelmäßig unsere Umgebung scannen und digitale Abbilder wie z.B. Stadt- und Landschaftsmodelle erzeugen, sowie Sensornetzwerke in unterschiedlichsten Anwendungsgebieten, wie z.B. der Logistik, der Verhaltensforschung von Tieren, oder der Klimaforschung. Zur Analyse räumlich-zeitlicher Daten werden neben der automatischen Analyse mittels statistischer Methoden und Data-Mining auch explorative Methoden angewendet, welche auf der interaktivenRäumlich-zeitliche Daten sind Daten, welche sowohl einen Raum- als auch einen Zeitbezug aufweisen. So können beispielsweise Zeitreihen von Geodaten, thematische Karten die sich über die Zeit verändern, oder Bewegungsaufzeichnungen von sich bewegenden Objekten als räumlich-zeitliche Daten aufgefasst werden. In der heutigen automatisierten Welt gibt es eine wachsende Anzahl von Datenquellen, die beständig räumlich-zeitliche Daten generieren. Hierzu gehören beispielsweise Verkehrsüberwachungssysteme, die Bewegungsdaten von Menschen oder Fahrzeugen aufzeichnen, Fernerkundungssysteme, welche regelmäßig unsere Umgebung scannen und digitale Abbilder wie z.B. Stadt- und Landschaftsmodelle erzeugen, sowie Sensornetzwerke in unterschiedlichsten Anwendungsgebieten, wie z.B. der Logistik, der Verhaltensforschung von Tieren, oder der Klimaforschung. Zur Analyse räumlich-zeitlicher Daten werden neben der automatischen Analyse mittels statistischer Methoden und Data-Mining auch explorative Methoden angewendet, welche auf der interaktiven Visualisierung der Daten beruhen. Diese Methode der Analyse basiert darauf, dass Anwender in Form interaktiver Visualisierung die Daten explorieren können, wodurch die menschliche Wahrnehmung sowie das Wissen der User genutzt werden, um Muster zu erkennen und dadurch einen Einblick in die Daten zu erlangen. Diese Arbeit beschreibt ein Software-Framework für die Visualisierung räumlich-zeitlicher Daten, welches GPU-basierte Techniken beinhaltet, um eine interaktive Visualisierung und Exploration großer räumlich-zeitlicher Datensätze zu ermöglichen. Die entwickelten Techniken umfassen Datenhaltung, Prozessierung und Rendering und ermöglichen es, große Datenmengen in Echtzeit zu prozessieren und zu visualisieren. Die Hauptbeiträge der Arbeit umfassen: - Konzept und Implementierung einer GPU-zentrierten Visualisierungspipeline. Die beschriebenen Techniken basieren auf dem Konzept einer GPU-zentrierten Visualisierungspipeline, in welcher alle Stufen -- Prozessierung,Mapping, Rendering -- auf der GPU ausgeführt werden. Bei diesem Konzept werden die räumlich-zeitlichen Daten direkt im GPU-Speicher abgelegt. Während des Rendering-Prozesses werden dann mittels Shader-Programmen die Daten prozessiert, gefiltert, ein Mapping auf visuelle Attribute vorgenommen, und schließlich die Geometrien für die Visualisierung erzeugt. Datenprozessierung, Filtering und Mapping können daher in Echtzeit ausgeführt werden. Dies ermöglicht es Usern, die Mapping-Parameter sowie den gesamten Visualisierungsprozess interaktiv zu steuern und zu kontrollieren. - Interaktive Visualisierung attributierter 3D-Trajektorien. Es wurde eine Visualisierungsmethode für die interaktive Exploration einer großen Anzahl von 3D Bewegungstrajektorien entwickelt. Die Trajektorien werden dabei innerhalb einer virtuellen geographischen Umgebung in Form von einfachen Geometrien, wie Linien, Bändern, Kugeln oder Röhren dargestellt. Durch interaktives Mapping können Attributwerte der Trajektorien oder einzelner Messpunkte auf visuelle Eigenschaften abgebildet werden. Hierzu stehen Form, Höhe, Größe, Farbe, Textur, sowie Animation zur Verfügung. Mithilfe dieses dynamischen Mappings wurden außerdem verschiedene Visualisierungsmethoden implementiert, wie z.B. eine Focus+Context-Visualisierung von Trajektorien mithilfe von interaktiven Dichtekarten, sowie einer Space-Time-Cube-Visualisierung zur Darstellung des zeitlichen Ablaufs einzelner Bewegungen. - Interaktive Visualisierung geographischer Netzwerke. Es wurde eine Visualisierungsmethode zur interaktiven Exploration geo-referenzierter Netzwerke entwickelt, welche die Visualisierung von Netzwerken mit einer großen Anzahl von Knoten und Kanten ermöglicht. Um die Analyse von Netzwerken verschiedener Größen und in unterschiedlichen Kontexten zu ermöglichen, stehen mehrere virtuelle geographische Umgebungen zur Verfügung, wie bspw. ein virtueller 3D-Globus, als auch 2D-Karten mit unterschiedlichen geographischen Projektionen. Zur interaktiven Analyse dieser Netzwerke stehen interaktive Tools wie Filterung, Mapping und Selektion zur Verfügung. Des weiteren wurden Visualisierungsmethoden für verschiedene Arten von Netzwerken, wie z.B. 3D-Netzwerke und zeitlich veränderliche Netzwerke, implementiert. Zur Demonstration des Konzeptes wurden interaktive Tools für zwei unterschiedliche Anwendungsfälle entwickelt. Das erste beinhaltet die Visualisierung attributierter 3D-Trajektorien, welche die Bewegungen von Flugzeugen um einen Flughafen beschreiben. Es ermöglicht Nutzern, die Trajektorien von ankommenden und startenden Flugzeugen über den Zeitraum eines Monats interaktiv zu explorieren und zu analysieren. Durch Verwendung der interaktiven Visualisierungsmethoden für 3D-Trajektorien und interaktiven Dichtekarten können Einblicke in die Daten gewonnen werden, wie beispielsweise häufig genutzte Flugkorridore, typische sowie untypische Bewegungsmuster, oder ungewöhnliche Vorkommnisse wie Fehlanflüge. Der zweite Anwendungsfall beinhaltet die Visualisierung von Klimanetzwerken, welche geographischen Netzwerken in der Klimaforschung darstellen. Klimanetzwerke repräsentieren die Dynamiken im Klimasystem durch eine Netzwerkstruktur, die die statistische Beziehungen zwischen Orten beschreiben. Das entwickelte Tool ermöglicht es Analysten, diese großen Netzwerke interaktiv zu explorieren und dadurch die Struktur des Netzwerks zu analysieren und mit den geographischen Daten in Beziehung zu setzen. Interaktive Filterung und Selektion ermöglichen es, Muster in den Daten zu identifizieren, und so bspw. Cluster in der Netzwerkstruktur oder Strömungsmuster zu erkennen.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Stefan BuschmannORCiDGND
URN:urn:nbn:de:kobv:517-opus4-443406
DOI:https://doi.org/10.25932/publishup-44340
Supervisor(s):Jürgen Roland Friedrich Döllner
Publication type:Doctoral Thesis
Language:English
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/12/03
Release date:2020/01/31
Tag:Computergrafik; Visual Analytics; Visualisierung
computer graphics; visual analytics; visualization
Number of pages:viii, 99
RVK - Regensburg classification:ST 320
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
MSC classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.)
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.