The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 346
Back to Result List

Chemical functionalization of porous carbon-based materials to enable novel modes for efficient electrochemical N2 fixation

Chemische Funktionalisierung von porösen Materialien auf Kohlenstoffbasis zur Ermöglichung neuartiger Verfahren für eine effiziente elektrochemische N2-Fixierung

  • The central motivation of the thesis was to provide possible solutions and concepts to improve the performance (e.g. activity and selectivity) of electrochemical N2 reduction reaction (NRR). Given that porous carbon-based materials usually exhibit a broad range of structural properties, they could be promising NRR catalysts. Therefore, the advanced design of novel porous carbon-based materials and the investigation of their application in electrocatalytic NRR including the particular reaction mechanisms are the most crucial points to be addressed. In this regard, three main topics were investigated. All of them are related to the functionalization of porous carbon for electrochemical NRR or other electrocatalytic reactions. In chapter 3, a novel C-TixOy/C nanocomposite has been described that has been obtained via simple pyrolysis of MIL-125(Ti). A novel mode for N2 activation is achieved by doping carbon atoms from nearby porous carbon into the anion lattice of TixOy. By comparing the NRR performance of M-Ts and by carrying out DFTThe central motivation of the thesis was to provide possible solutions and concepts to improve the performance (e.g. activity and selectivity) of electrochemical N2 reduction reaction (NRR). Given that porous carbon-based materials usually exhibit a broad range of structural properties, they could be promising NRR catalysts. Therefore, the advanced design of novel porous carbon-based materials and the investigation of their application in electrocatalytic NRR including the particular reaction mechanisms are the most crucial points to be addressed. In this regard, three main topics were investigated. All of them are related to the functionalization of porous carbon for electrochemical NRR or other electrocatalytic reactions. In chapter 3, a novel C-TixOy/C nanocomposite has been described that has been obtained via simple pyrolysis of MIL-125(Ti). A novel mode for N2 activation is achieved by doping carbon atoms from nearby porous carbon into the anion lattice of TixOy. By comparing the NRR performance of M-Ts and by carrying out DFT calculations, it is found that the existence of (O-)Ti-C bonds in C-doped TixOy can largely improve the ability to activate and reduce N2 as compared to unoccupied OVs in TiO2. The strategy of rationally doping heteroatoms into the anion lattice of transition metal oxides to create active centers may open many new opportunities beyond the use of noble metal-based catalysts also for other reactions that require the activation of small molecules as well. In chapter 4, a novel catalyst construction composed of Au single atoms decorated on the surface of NDPCs was reported. The introduction of Au single atoms leads to active reaction sites, which are stabilized by the N species present in NDPCs. Thus, the interaction within as-prepared AuSAs-NDPCs catalysts enabled promising performance for electrochemical NRR. For the reaction mechanism, Au single sites and N or C species can act as Frustrated Lewis pairs (FLPs) to enhance the electron donation and back-donation process to activate N2 molecules. This work provides new opportunities for catalyst design in order to achieve efficient N2 fixation at ambient conditions by utilizing recycled electric energy. The last topic described in chapter 5 mainly focused on the synthesis of dual heteroatom-doped porous carbon from simple precursors. The introduction of N and B heteroatoms leads to the construction of N-B motives and Frustrated Lewis pairs in a microporous architecture which is also rich in point defects. This can improve the strength of adsorption of different reactants (N2 and HMF) and thus their activation. As a result, BNC-2 exhibits a desirable electrochemical NRR and HMF oxidation performance. Gas adsorption experiments have been used as a simple tool to elucidate the relationship between the structure and catalytic activity. This work provides novel and deep insights into the rational design and the origin of activity in metal-free electrocatalysts and enables a physically viable discussion of the active motives, as well as the search for their further applications. Throughout this thesis, the ubiquitous problems of low selectivity and activity of electrochemical NRR are tackled by designing porous carbon-based catalysts with high efficiency and exploring their catalytic mechanisms. The structure-performance relationships and mechanisms of activation of the relatively inert N2 molecules are revealed by either experimental results or DFT calculations. These fundamental understandings pave way for a future optimal design and targeted promotion of NRR catalysts with porous carbon-based structure, as well as study of new N2 activation modes.show moreshow less
  • Die zentrale Motivation der Arbeit war es, mögliche Lösungen und Konzepte zur Verbesserung der Leistung (z.B. Aktivität und Selektivität) der elektrochemischen N2-Reduktionsreaktion (NRR) anzubieten. Da poröse Materialien auf Kohlenstoffbasis in der Regel ein breites Spektrum an strukturellen Eigenschaften aufweisen, könnten sie vielversprechende NRR-Katalysatoren sein. Daher sind das fortgeschrittene Design neuartiger poröser Materialien auf Kohlenstoffbasis und die Untersuchung ihrer Anwendung in der elektrokatalytischen NRR einschließlich der besonderen Reaktionsmechanismen die wichtigsten Punkte, die angegangen werden müssen. In diesem Zusammenhang wurden drei Hauptthemen untersucht. Alle von ihnen stehen im Zusammenhang mit der Funktionalisierung von porösem Kohlenstoff für elektrochemische NRR oder andere elektrokatalytische Reaktionen. In Kapitel 3 wurde ein neuartiger C-TixOy/C-Nanokomposit beschrieben, der durch einfache Pyrolyse von MIL-125(Ti) gewonnen wurde. Ein neuartiger Modus für die N2-Aktivierung wird durch DotierungDie zentrale Motivation der Arbeit war es, mögliche Lösungen und Konzepte zur Verbesserung der Leistung (z.B. Aktivität und Selektivität) der elektrochemischen N2-Reduktionsreaktion (NRR) anzubieten. Da poröse Materialien auf Kohlenstoffbasis in der Regel ein breites Spektrum an strukturellen Eigenschaften aufweisen, könnten sie vielversprechende NRR-Katalysatoren sein. Daher sind das fortgeschrittene Design neuartiger poröser Materialien auf Kohlenstoffbasis und die Untersuchung ihrer Anwendung in der elektrokatalytischen NRR einschließlich der besonderen Reaktionsmechanismen die wichtigsten Punkte, die angegangen werden müssen. In diesem Zusammenhang wurden drei Hauptthemen untersucht. Alle von ihnen stehen im Zusammenhang mit der Funktionalisierung von porösem Kohlenstoff für elektrochemische NRR oder andere elektrokatalytische Reaktionen. In Kapitel 3 wurde ein neuartiger C-TixOy/C-Nanokomposit beschrieben, der durch einfache Pyrolyse von MIL-125(Ti) gewonnen wurde. Ein neuartiger Modus für die N2-Aktivierung wird durch Dotierung von Kohlenstoffatomen aus nahegelegenem porösem Kohlenstoff in das Aniongitter von TixOy erreicht. Durch den Vergleich der NRR-Leistung von M-Ts und die Durchführung von DFT-Berechnungen wird festgestellt, dass die Existenz von (O-)Ti-C-Bindungen in C-dotiertem TixOy die Fähigkeit zur Aktivierung und Reduktion von N2 im Vergleich zu unbesetzten OVs in TiO2 erheblich verbessern kann. Die Strategie, Heteroatome rational in das Aniongitter von Übergangsmetalloxiden zu dotieren, um aktive Zentren zu schaffen, kann viele neue Möglichkeiten eröffnen, die über den Einsatz von edelmetallbasierten Katalysatoren hinausgehen, auch für andere Reaktionen, die ebenfalls die Aktivierung von kleinen Molekülen erfordern. In Kapitel 4 wurde über eine neuartige Katalysatorkonstruktion aus Au-Einzelatomen berichtet, die auf der Oberfläche von NDPCs dekoriert sind. Die Einführung von Au-Einzelatomen führt zu aktiven Reaktionsstellen, die durch die in NDPCs vorhandenen N-Spezies stabilisiert werden. So ermöglichte die Interaktion innerhalb von hergestellten AuSAs-NDPCs-Katalysatoren eine vielversprechende Leistung für die elektrochemische NRR. Für den Reaktionsmechanismus können Au-Einzelstandorte und N- oder C-Spezies als frustrierte Lewis-Paare (FLPs) fungieren, um den Elektronenabgabe- und Rückgabeprozess zur Aktivierung von N2-Molekülen zu verbessern. Diese Arbeit bietet neue Möglichkeiten für das Design von Katalysatoren, um eine effiziente N2-Fixierung unter Umgebungsbedingungen durch die Nutzung recycelter elektrischer Energie zu erreichen. Das letzte in Kapitel 5 beschriebene Thema konzentrierte sich hauptsächlich auf die Synthese von dualem heteroatomdotiertem porösem Kohlenstoff aus einfachen Vorläufern. Die Einführung von N- und B-Heteroatomen führt zur Konstruktion von N-B-Motiven und frustrierten Lewis-Paaren in einer mikroporösen Architektur, die ebenfalls reich an Punktdefekten ist. Dies kann die Adsorptionskraft verschiedener Reaktanden (N2 und HMF) und damit deren Aktivierung verbessern. Infolgedessen weist BNC-2 eine wünschenswerte elektrochemische NRR- und HMF-Oxidationsleistung auf. Gasadsorptionsexperimente wurden als einfaches Werkzeug zur Aufklärung des Zusammenhangs zwischen Struktur und katalytischer Aktivität eingesetzt. Diese Arbeit liefert neue und tiefe Einblicke in das rationale Design und den Ursprung der Aktivität bei metallfreien Elektrokatalysatoren und ermöglicht eine physikalisch tragfähige Diskussion der aktiven Motive, sowie die Suche nach deren weiteren Anwendungen. Während dieser Arbeit, die allgegenwärtigen Probleme der niedrigen Selektivität und Aktivität der elektrochemischen NRR werden durch die Gestaltung poröser Katalysatoren auf Kohlenstoffbasis mit hoher Effizienz und die Erforschung ihrer katalytischen Mechanismen. Die Struktur-Leistungsbeziehungen und Aktivierungsmechanismen der relativ inerten N2-Moleküle werden entweder durch experimentelle Ergebnisse oder DFT-Berechnungen aufgezeigt. Diese grundlegenden Erkenntnisse ebnen den Weg für ein zukünftiges optimales Design und eine gezielte Förderung von NRR-Katalysatoren mit poröser Kohlenstoffstruktur, sowie für die Untersuchung neuer N2-Aktivierungsmodi.show moreshow less

Download full text files

  • qin_diss.pdfeng
    (18367KB)

    SHA-1:b9746ddbccc9fbebdbd16d34f290ebd2761fb76b

Export metadata

Metadaten
Author details:Qing QinORCiDGND
URN:urn:nbn:de:kobv:517-opus4-443397
DOI:https://doi.org/10.25932/publishup-44339
Supervisor(s):Markus Antonietti
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/12/16
Release date:2020/01/30
Tag:Ammoniak; N2-Fixierung; Selektivität; porösen Materialien auf Kohlenstoffbasis
N2 fixation; ammonia; porous carbon-based materials; selectivity
Number of pages:146
RVK - Regensburg classification:VE 7047
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.