• search hit 99 of 0
Back to Result List

A lightweight framework for rapid development of object-based hydrological model engines

  • Computer-based simulation models are frequently used in hydrological research and engineering but also in other fields of environmental sciences. New case studies often require existing model concepts to be adapted. Extensions may be necessary due to the peculiarities of the studied natural system or subtleties of anthropogenic control. In other cases, simplifications must be made in response to scarce data, incomplete knowledge, or restrictions set by the spatio-temporal scale of application. This paper introduces an open-source modeling framework called ECHSE designed to cope with the above-mentioned challenges. It provides a lightweight infrastructure for the rapid development of new, reusable simulation tools and, more importantly, the safe modification of existing formulations. ECHSE-based models treat the simulated system as a collection of interacting objects. Although feedbacks are generally supported, the majority of the objects' interactions is expected to be of the feed-forward type. Therefore, the ECHSE software isComputer-based simulation models are frequently used in hydrological research and engineering but also in other fields of environmental sciences. New case studies often require existing model concepts to be adapted. Extensions may be necessary due to the peculiarities of the studied natural system or subtleties of anthropogenic control. In other cases, simplifications must be made in response to scarce data, incomplete knowledge, or restrictions set by the spatio-temporal scale of application. This paper introduces an open-source modeling framework called ECHSE designed to cope with the above-mentioned challenges. It provides a lightweight infrastructure for the rapid development of new, reusable simulation tools and, more importantly, the safe modification of existing formulations. ECHSE-based models treat the simulated system as a collection of interacting objects. Although feedbacks are generally supported, the majority of the objects' interactions is expected to be of the feed-forward type. Therefore, the ECHSE software is particularly useful in the context of hydrological catchment modeling. Conversely, it is unsuitable, e.g., for fully hydrodynamic simulations and groundwater flow modeling. The focus of the paper is put on a comprehensible outline of the ECHSE's fundamental concepts and limitations. For the purpose of illustration, a specific, ECHSE-based solution for hydrological catchment modeling is presented which has undergone testing in a number of river basins. (C) 2015 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:David Kneis
DOI:https://doi.org/10.1016/j.envsoft.2015.02.009
ISSN:1364-8152
ISSN:1873-6726
Title of parent work (English):Environmental modelling & software with environment data news
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:ECHSE; Genetic model; Hydrology; Modeling framework
Volume:68
Number of pages:12
First page:110
Last Page:121
Funding institution:German Ministry of Education and Research (BMBF) through the PROGRESS project [03IS2191A]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.