The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 87 of 558
Back to Result List

X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars

  • Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectraUsing a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.∗show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Vikram V. DwarkadasORCiD, D. Rosenberg
URN:urn:nbn:de:kobv:517-opus4-88301
Title of parent work (English):Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015
Publication type:Article
Language:English
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2016/02/23
First page:329
Last Page:332
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Publishing method:Universitätsverlag Potsdam
Collection(s):Universität Potsdam / Tagungsbände/Proceedings (nicht fortlaufend) / Wolf-Rayet Stars: Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 / Wolf-Rainer Hamann, Andreas Sander, Helge Todt (Eds.)
Universität Potsdam / Tagungsbände/Proceedings (nicht fortlaufend) / Wolf-Rayet Stars: Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 / Wolf-Rainer Hamann, Andreas Sander, Helge Todt (Eds.) / WR nebulae
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.