The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 11 of 960
Back to Result List

The putative K+ channel subunit AtKCO3 forms stable dimers in arabidopsis

  • The permeation pore of K+ channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K+ channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::G FP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFPThe permeation pore of K+ channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K+ channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::G FP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFP are detected as homodimers upon velocity gradient centrifugation, an assembly state that would not allow for activity. We conclude that if AtKCO3 ever functions as a K+ channel, active tetramers are held by particularly weak interactions, are formed only in unknown specific conditions and may require partner proteins.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alessandra Rocchetti, Tripti Sharma, Camilla Wulfetange, Joachim Scholz-Starke, Alexandra Grippa, Armando Carpaneto, Ingo DreyerORCiDGND, Alessandro Vitale, Katrin Czempinski, Emanuela Pedrazzini
DOI:https://doi.org/10.3389/fpls.2012.00251
ISSN:1664-462X
Title of parent work (English):Frontiers in plant science
Publisher:Frontiers Research Foundation
Place of publishing:Lausanne
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Arabidopsis; membrane proteins; potassium channels; protein assembly; tonoplast
Volume:3
Number of pages:13
Funding institution:EU [MRTN-CT-2006-035833, 303674]; Progetti di Ricerca di Interesse Nazionale; German Academic Exchange Service (DAAD)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.