The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 73 of 56871
Back to Result List

Boundary Value Problems for the Lorentzian Dirac Operator

  • The index theorem for elliptic operators on a closed Riemannian manifold by Atiyah and Singer has many applications in analysis, geometry and topology, but it is not suitable for a generalization to a Lorentzian setting. In the case where a boundary is present Atiyah, Patodi and Singer provide an index theorem for compact Riemannian manifolds by introducing non-local boundary conditions obtained via the spectral decomposition of an induced boundary operator, so called APS boundary conditions. Bär and Strohmaier prove a Lorentzian version of this index theorem for the Dirac operator on a manifold with boundary by utilizing results from APS and the characterization of the spectral flow by Phillips. In their case the Lorentzian manifold is assumed to be globally hyperbolic and spatially compact, and the induced boundary operator is given by the Riemannian Dirac operator on a spacelike Cauchy hypersurface. Their results show that imposing APS boundary conditions for these boundary operator will yield a Fredholm operator with a smoothThe index theorem for elliptic operators on a closed Riemannian manifold by Atiyah and Singer has many applications in analysis, geometry and topology, but it is not suitable for a generalization to a Lorentzian setting. In the case where a boundary is present Atiyah, Patodi and Singer provide an index theorem for compact Riemannian manifolds by introducing non-local boundary conditions obtained via the spectral decomposition of an induced boundary operator, so called APS boundary conditions. Bär and Strohmaier prove a Lorentzian version of this index theorem for the Dirac operator on a manifold with boundary by utilizing results from APS and the characterization of the spectral flow by Phillips. In their case the Lorentzian manifold is assumed to be globally hyperbolic and spatially compact, and the induced boundary operator is given by the Riemannian Dirac operator on a spacelike Cauchy hypersurface. Their results show that imposing APS boundary conditions for these boundary operator will yield a Fredholm operator with a smooth kernel and its index can be calculated by a formula similar to the Riemannian case. Back in the Riemannian setting, Bär and Ballmann provide an analysis of the most general kind of boundary conditions that can be imposed on a first order elliptic differential operator that will still yield regularity for solutions as well as Fredholm property for the resulting operator. These boundary conditions can be thought of as deformations to the graph of a suitable operator mapping APS boundary conditions to their orthogonal complement. This thesis aims at applying the boundary conditions found by Bär and Ballmann to a Lorentzian setting to understand more general types of boundary conditions for the Dirac operator, conserving Fredholm property as well as providing regularity results and relative index formulas for the resulting operators. As it turns out, there are some differences in applying these graph-type boundary conditions to the Lorentzian Dirac operator when compared to the Riemannian setting. It will be shown that in contrast to the Riemannian case, going from a Fredholm boundary condition to its orthogonal complement works out fine in the Lorentzian setting. On the other hand, in order to deduce Fredholm property and regularity of solutions for graph-type boundary conditions, additional assumptions for the deformation maps need to be made. The thesis is organized as follows. In chapter 1 basic facts about Lorentzian and Riemannian spin manifolds, their spinor bundles and the Dirac operator are listed. These will serve as a foundation to define the setting and prove the results of later chapters. Chapter 2 defines the general notion of boundary conditions for the Dirac operator used in this thesis and introduces the APS boundary conditions as well as their graph type deformations. Also the role of the wave evolution operator in finding Fredholm boundary conditions is analyzed and these boundary conditions are connected to notion of Fredholm pairs in a given Hilbert space. Chapter 3 focuses on the principal symbol calculation of the wave evolution operator and the results are used to proof Fredholm property as well as regularity of solutions for suitable graph-type boundary conditions. Also sufficient conditions are derived for (pseudo-)local boundary conditions imposed on the Dirac operator to yield a Fredholm operator with a smooth solution space. In the last chapter 4, a few examples of boundary conditions are calculated applying the results of previous chapters. Restricting to special geometries and/or boundary conditions, results can be obtained that are not covered by the more general statements, and it is shown that so-called transmission conditions behave very differently than in the Riemannian setting.show moreshow less
  • Der Indexsatz für elliptische Operatoren auf geschlossenen Riemannschen Mannigfaltigkeiten von Atiyah und Singer hat zahlreiche Anwendungen in Analysis, Geometrie und Topologie, ist aber ungeeignet für eine Verallgemeinerung auf Lorentz-Mannigfaltigkeiten. Durch die Einführung nicht-lokaler Randbedingungen, gewonnen aus der Spektralzerlegung eines induzierten Randoperators, beweisen Atiyah, Patodi und Singer (APS) einen Indexsatz für den Fall kompakter Riemannscher Mannigfaltigkeiten mit Rand. Aufbauend auf diesem Resultat und mit Hilfe der Charakterisierung des Spektralflusses durch Philipps gelangen Bär und Strohmaier zu einem Indexsatz für den Dirac-Operator auf global hyperbolischen Lorentz-Mannigfaltigkeiten mit kompakten und raumartigen Cauchy-Hyperflächen. Ihr Ergebnis zeigt unter anderem, dass der Dirac Operator auf solchen Mannigfaltigkeiten und unter APS Randbedingungen ein Fredholm-Operator mit glattem Kern ist und das sein Index sich aus einer zum Riemannschen Fall analogen Formel berechnen lässt. Zurück im RiemannschenDer Indexsatz für elliptische Operatoren auf geschlossenen Riemannschen Mannigfaltigkeiten von Atiyah und Singer hat zahlreiche Anwendungen in Analysis, Geometrie und Topologie, ist aber ungeeignet für eine Verallgemeinerung auf Lorentz-Mannigfaltigkeiten. Durch die Einführung nicht-lokaler Randbedingungen, gewonnen aus der Spektralzerlegung eines induzierten Randoperators, beweisen Atiyah, Patodi und Singer (APS) einen Indexsatz für den Fall kompakter Riemannscher Mannigfaltigkeiten mit Rand. Aufbauend auf diesem Resultat und mit Hilfe der Charakterisierung des Spektralflusses durch Philipps gelangen Bär und Strohmaier zu einem Indexsatz für den Dirac-Operator auf global hyperbolischen Lorentz-Mannigfaltigkeiten mit kompakten und raumartigen Cauchy-Hyperflächen. Ihr Ergebnis zeigt unter anderem, dass der Dirac Operator auf solchen Mannigfaltigkeiten und unter APS Randbedingungen ein Fredholm-Operator mit glattem Kern ist und das sein Index sich aus einer zum Riemannschen Fall analogen Formel berechnen lässt. Zurück im Riemannschen Setup zeigen Bär und Ballmann eine allgemeine Charakterisierung von Randbedingungen für elliptische Differentialoperatoren erster Ordnung die sowohl die Regularität von Lösungen, als auch Fredholm-Eigenschaft des resultierenden Operators garantieren. Die dort entwickelten Randbedingungen können als Deformation auf den Graphen einer geeigneten Abbildung der APS-Randbedingung auf ihr orthogonales Komplement verstanden werden. Die vorliegende Arbeit hat das Ziel die von Bär und Ballmann beschriebenen Randbedingungen auf den Dirac-Operator von global hyperbolischen Lorentz-Mannigfaltigkeiten zu übertragen um eine allgemeinere Klasse von Randbedingungen zu finden unter denen der resultierende Dirac-Operator Fredholm ist und einen glatten Lösungsraum hat. Weiterhin wird analysiert wie sich derartige Deformation von APS-Randbedingungen auf den Index solcher Operatoren auswirken und wie dieser aus den bekannten Resultaten für den APS-Index berechnet werden kann. Es wird unter anderem gezeigt, dass im Gegensatz zum Riemannschen Fall beim Übergang von Randbedingungen zu ihrem orthogonalen Komplement die Fredholm-Eigenschaft des Operators erhalten bleibt. Andererseits sind zusätzliche Annahme nötig um die Regularität von Lösungen, sowie die Fredholm-Eigenschaft für Graph-Deformationen im Fall von Lorentz-Mannigfaltigkeiten zu erhalten. Die Arbeit ist dabei wie folgt aufgebaut. In Kapitel 1 werden grundlegende Fakten zu Lorentzschen und Riemannschen Spin-Mannigfaltigkeiten, ihren Spinor-Bündeln und Dirac-Operatoren zusammengetragen. Diese Informationen dienen als Ausgangspunkt zur Definition und Analyse von Randbedingungen in späteren Kapiteln der Arbeit. Kapitel 2 definiert allgemein den Begriff der Randbedingung wie er in dieser Arbeit verwendet wird und führt zudem den sogenannten ''wave-evolution-Operator'' ein, der eine wichtige Rolle im Finden und Analysieren von Fredholm-Randbedingungen für den Dirac-Operator spielen wird. Zuletzt wird der Zusammenhang zwischen Fredholm-Paaren eines Hilbert-Raumes und Fredholm-Randbedingungen für den Dirac-Operator erklärt. Kapitel 3 beschäftigt sich mit der Berechnung des Hauptsymbols des wave-evolution-Operators und die dort erzielten Resultate werden verwendet um Fredholm-Eigenschaft, sowie Regularität von Lösungen für geeignete Deformationen von APS-Randbedingungen zu beweisen. Weiterhin werden hinreichende Bedingungen für (pseudo-)lokale Randbedingungen abgeleitet, die Fredholm-Eigenschaft und Regularität für den resultierenden Dirac-Operator garantieren. Kapitel 4 zeigt, aufbauend auf den Ergebnissen der Kapitel 1-3, einige Beispiele von lokalen und nicht-lokalen Randbedingungen für den Dirac-Operator. Unter gewissen Einschränkungen an die Geometrie der zugrunde liegenden Mannigfaltigkeit bzw. den gestellten Randbedingungen können Ergebnisse erzielt werden die in den allgemeineren Resultaten der vorangehenden Kapitel nicht enthalten sind. Zuletzt werden sogenannte Transmission-Bedingungen analysiert und die Unterschiede dieser Randbedingungen zum Riemannschen Fall aufgezeigt.show moreshow less

Download full text files

  • SHA-512:f5eaba8cfa214653b5332b18535288924524a441f0a2cec9f34c84d945b6176dcb1bd3139c76c7cb065c0da2bb5b993d07e3ae0922ffd6648dad7e20cbe937e4

Export metadata

Metadaten
Author details:Sebastian HannesORCiD
URN:urn:nbn:de:kobv:517-opus4-548391
DOI:https://doi.org/10.25932/publishup-54839
translated title (German):Randwertprobleme für den Lorentschen Diracoperator
Reviewer(s):Christian BärORCiDGND, Jan MetzgerGND, Michał WrochnaORCiD
Supervisor(s):Christian Bär
Publication type:Doctoral Thesis
Language:English
Date of first publication:2022/04/25
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/02/18
Release date:2022/04/25
Tag:Diracoperator; Lorentzgeometrie; Randwertprobleme
Boundary Value Problems; Dirac Operator; Lorentzian Geometry
Number of pages:67
RVK - Regensburg classification:SK 560
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.