The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 64 of 56798
Back to Result List

Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system

Entwicklung einer neuartigen DNS-Assemblierungsmethode und ihre Anwendung für die Etablierung eines Rotlicht-responsiven Regulierungssystems

  • With Saccharomyces cerevisiae being a commonly used host organism for synthetic biology and biotechnology approaches, the work presented here aims at the development of novel tools to improve and facilitate pathway engineering and heterologous protein production in yeast. Initially, the multi-part assembly strategy AssemblX was established, which allows the fast, user-friendly and highly efficient construction of up to 25 units, e.g. genes, into a single DNA construct. To speed up complex assembly projects, starting from sub-gene fragments and resulting in mini-chromosome sized constructs, AssemblX follows a level-based approach: Level 0 stands for the assembly of genes from multiple sub-gene fragments; Level 1 for the combination of up to five Level 0 units into one Level 1 module; Level 2 for linkages of up to five Level 1 modules into one Level 2 module. This way, all Level 0 and subsequently all Level 1 assemblies can be carried out simultaneously. Individually planned, overlap-based Level 0 assemblies enable scar-free andWith Saccharomyces cerevisiae being a commonly used host organism for synthetic biology and biotechnology approaches, the work presented here aims at the development of novel tools to improve and facilitate pathway engineering and heterologous protein production in yeast. Initially, the multi-part assembly strategy AssemblX was established, which allows the fast, user-friendly and highly efficient construction of up to 25 units, e.g. genes, into a single DNA construct. To speed up complex assembly projects, starting from sub-gene fragments and resulting in mini-chromosome sized constructs, AssemblX follows a level-based approach: Level 0 stands for the assembly of genes from multiple sub-gene fragments; Level 1 for the combination of up to five Level 0 units into one Level 1 module; Level 2 for linkages of up to five Level 1 modules into one Level 2 module. This way, all Level 0 and subsequently all Level 1 assemblies can be carried out simultaneously. Individually planned, overlap-based Level 0 assemblies enable scar-free and sequence-independent assemblies of transcriptional units, without limitations in fragment number, size or content. Level 1 and Level 2 assemblies, which are carried out via predefined, computationally optimized homology regions, follow a standardized, highly efficient and PCR-free scheme. AssemblX follows a virtually sequence-independent scheme with no need for time-consuming domestication of assembly parts. To minimize the risk of human error and to facilitate the planning of assembly projects, especially for individually designed Level 0 constructs, the whole AssemblX process is accompanied by a user-friendly webtool. This webtool provides the user with an easy-to-use operating surface and returns a bench-protocol including all cloning steps. The efficiency of the assembly process is further boosted through the implementation of different features, e.g. ccdB counter selection and marker switching/reconstitution. Due to the design of homology regions and vector backbones the user can flexibly choose between various overlap-based cloning methods, enabling cost-efficient assemblies which can be carried out either in E. coli or yeast. Protein production in yeast is additionally supported by a characterized library of 40 constitutive promoters, fully integrated into the AssemblX toolbox. This provides the user with a starting point for protein balancing and pathway engineering. Furthermore, the final assembly cassette can be subcloned into any vector, giving the user the flexibility to transfer the individual construct into any host organism different from yeast. As successful production of heterologous compounds generally requires a precise adjustment of protein levels or even manipulation of the host genome to e.g. inhibit unwanted feedback regulations, the optogenetic transcriptional regulation tool PhiReX was designed. In recent years, light induction was reported to enable easy, reversible, fast, non-toxic and nearly gratuitous regulation, thereby providing manifold advantages compared to conventional chemical inducers. The optogenetic interface established in this study is based on the photoreceptor PhyB and its interacting protein PIF3. Both proteins, derived from Arabidopsis thaliana, dimerize in a red/far-red light-responsive manner. This interaction depends on a chromophore, naturally not available in yeast. By fusing split proteins to both components of the optical dimerizer, active enzymes can be reconstituted in a light-dependent manner. For the construction of the red/far-red light sensing gene expression system PhiReX, a customizable synTALE-DNA binding domain was fused to PhyB, and a VP64 activation domain to PIF3. The synTALE-based transcription factor allows programmable targeting of any desired promoter region. The first, plasmid-based PhiReX version mediates chromophore- and light-dependent expression of the reporter gene, but required further optimization regarding its robustness, basal expression and maximum output. This was achieved by genome-integration of the optical regulator pair, by cloning the reporter cassette on a high-copy plasmid and by additional molecular modifications of the fusion proteins regarding their cellular localization. In combination, this results in a robust and efficient activation of cells over an incubation time of at least 48 h. Finally, to boost the potential of PhiReX for biotechnological applications, yeast was engineered to produce the chromophore. This overcomes the need to supply the expensive and photo-labile compound exogenously. The expression output mediated through PhiReX is comparable to the strong constitutive yeast TDH3 promoter and - in the experiments described here - clearly exceeds the commonly used galactose inducible GAL1 promoter. The fast-developing field of synthetic biology enables the construction of complete synthetic genomes. The upcoming Synthetic Yeast Sc2.0 Project is currently underway to redesign and synthesize the S. cerevisiae genome. As a prerequisite for the so-called “SCRaMbLE” system, all Sc2.0 chromosomes incorporate symmetrical target sites for Cre recombinase (loxPsym sites), enabling rearrangement of the yeast genome after induction of Cre with the toxic hormonal substance beta-estradiol. To overcome the safety concern linked to the use of beta-estradiol, a red light-inducible Cre recombinase, dubbed L-SCRaMbLE, was established in this study. L-SCRaMbLE was demonstrated to allow a time- and chromophore-dependent recombination with reliable off-states when applied to a plasmid containing four genes of the beta-carotene pathway, each flanked with loxPsym sites. When directly compared to the original induction system, L-SCRaMbLE generates a larger variety of recombination events and lower basal activity. In conclusion, L-SCRaMbLE provides a promising and powerful tool for genome rearrangement. The three tools developed in this study provide so far unmatched possibilities to tackle complex synthetic biology projects in yeast by addressing three different stages: fast and reliable biosynthetic pathway assembly; highly specific, orthogonal gene regulation; and tightly controlled synthetic evolution of loxPsym-containing DNA constructs.show moreshow less
  • In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverlässigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilität bezüglich des Wirtsorganismus, sowie der hohen Effektivität, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettlösung von der Software-gestützten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Größe von Mini-Chromosomen erreichen können. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform für die Bäckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitivenIn der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverlässigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilität bezüglich des Wirtsorganismus, sowie der hohen Effektivität, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettlösung von der Software-gestützten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Größe von Mini-Chromosomen erreichen können. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform für die Bäckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabhängiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei wählbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenlänge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte ermöglicht. Zusammenfassend wurden damit drei Werkzeuge für die synthetische Biologie etabliert. Diese ermöglichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abhängige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lena HochreinORCiDGND
URN:urn:nbn:de:kobv:517-opus4-404441
Reviewer(s):Arren Bar-EvenORCiD, Helge B. BodeGND
Supervisor(s):Bernd Müller-Röber, Katja Maren Arndt, Katrin Messerschmid
Publication type:Doctoral Thesis
Language:English
Date of first publication:2018/01/10
Publication year:2017
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2017/11/08
Release date:2018/01/10
Tag:Cre Rekombinase; DNS Assemblierung; Optimierung von Biosynthesewegen; Optogenetik; Transkriptionsfaktor; synthetische Biologie
Cre recombinase; DNA assembly; optogenetics; pathway engineering; synthetic biology; transcription factor
Number of pages:146
RVK - Regensburg classification:WF 9741
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.