• search hit 1 of 1
Back to Result List

Der Einfluss der Koordination von Spurenelementen in silikatischen und aluminosilikatischen Schmelzen auf Elementverteilungsprozesse in magmatischen Systemen

The influence of trace element coordination in silicate and aluminosilicate melts on the element distribution processes in magmatic systems

  • Das Wissen um die lokale Struktur von Seltenen Erden Elementen (SEE) in silikatischen und aluminosilikatischen Schmelzen ist von fundamentalem Interesse für die Geochemie der magmatischen Prozesse, speziell wenn es um ein umfassendes Verständnis der Verteilungsprozesse von SEE in magmatischen Systemen geht. Es ist allgemein akzeptiert, dass die SEE-Verteilungsprozesse von Temperatur, Druck, Sauerstofffugazität (im Fall von polyvalenten Kationen) und der Kristallchemie kontrolliert werden. Allerdings ist wenig über den Einfluss der Schmelzzusammensetzung selbst bekannt. Ziel dieser Arbeit ist, eine Beziehung zwischen der Variation der SEE-Verteilung mit der Schmelzzusammensetzung und der Koordinationschemie dieser SEE in der Schmelze zu schaffen. Dazu wurden Schmelzzusammensetzungen von Prowatke und Klemme (2005), welche eine deutliche Änderung der Verteilungskoeffizienten zwischen Titanit und Schmelze ausschließlich als Funktion der Schmelzzusammensetzung zeigen, sowie haplogranitische bzw. haplobasaltische SchmelzzusammensetzungenDas Wissen um die lokale Struktur von Seltenen Erden Elementen (SEE) in silikatischen und aluminosilikatischen Schmelzen ist von fundamentalem Interesse für die Geochemie der magmatischen Prozesse, speziell wenn es um ein umfassendes Verständnis der Verteilungsprozesse von SEE in magmatischen Systemen geht. Es ist allgemein akzeptiert, dass die SEE-Verteilungsprozesse von Temperatur, Druck, Sauerstofffugazität (im Fall von polyvalenten Kationen) und der Kristallchemie kontrolliert werden. Allerdings ist wenig über den Einfluss der Schmelzzusammensetzung selbst bekannt. Ziel dieser Arbeit ist, eine Beziehung zwischen der Variation der SEE-Verteilung mit der Schmelzzusammensetzung und der Koordinationschemie dieser SEE in der Schmelze zu schaffen. Dazu wurden Schmelzzusammensetzungen von Prowatke und Klemme (2005), welche eine deutliche Änderung der Verteilungskoeffizienten zwischen Titanit und Schmelze ausschließlich als Funktion der Schmelzzusammensetzung zeigen, sowie haplogranitische bzw. haplobasaltische Schmelzzusammensetzungen als Vertreter magmatischer Systeme mit La, Gd, Yb und Y dotiert und als Glas synthetisiert. Die Schmelzen variierten systematisch im Aluminiumsättigungsindex (ASI), welcher bei den Prowatke und Klemme (2005) Zusammensetzungen einen Bereich von 0.115 bis 0.768, bei den haplogranitischen Zusammensetzungen einen Bereich von 0.935 bis 1.785 und bei den haplobasaltischen Zusammensetzungen einen Bereich von 0.368 bis 1.010 abdeckt. Zusätzlich wurden die haplogranitischen Zusammensetzungen mit 4 % H2O synthetisiert, um den Einfluss von Wasser auf die lokale Umgebung von SEE zu studieren. Um Informationen über die lokalen Struktur von Gd, Yb und Y zu erhalten wurde die Röntgenabsorptionsspektroskopie angewendet. Dabei liefert die Untersuchung der Feinstruktur mittels der EXAFS-Spektroskopie (engl. Extended X-Ray Absorption Fine Structure) quantitative Informationen über die lokale Umgebung, während RIXS (engl. resonant inelastic X-ray scattering), sowie die daraus extrahierte hoch aufgelöste Nahkantenstruktur, XANES (engl. X-ray absorption near edge structure) qualitative Informationen über mögliche Koordinationsänderungen von La, Gd und Yb in den Gläsern liefert. Um mögliche Unterschiede der lokalen Struktur oberhalb der Glastransformationstemperatur (TG) zur Raumtemperatur zu untersuchen, wurden exemplarisch Hochtemperatur Y-EXAFS Untersuchungen durchgeführt. Für die Auswertung der EXAFS-Messungen wurde ein neu eingeführter Histogramm-Fit verwendet, der auch nicht-symmetrische bzw. nichtgaußförmige Paarverteilungsfunktionen beschreiben kann, wie sie bei einem hohen Grad der Polymerisierung bzw. bei hohen Temperaturen auftreten können. Die Y-EXAFS-Spektren für die Prowatke und Klemme (2005) Zusammensetzungen zeigen mit Zunahme des ASI, eine Zunahme der Asymmetrie und Breite der Y-O Paarverteilungsfunktion, welche sich in sich in der Änderung der Koordinationszahl von 6 nach 8 und einer Zunahme des Y-O Abstand um 0.13Å manifestiert. Ein ähnlicher Trend lässt sich auch für die Gd- und Yb-EXAFS-Spektren beobachten. Die hoch aufgelösten XANESSpektren für La, Gd und Yb zeigen, dass sich die strukturellen Unterschiede zumindest halb-quantitativ bestimmen lassen. Dies gilt insbesondere für Änderungen im mittleren Abstand zu den Sauerstoffatomen. Im Vergleich zur EXAFS-Spektroskopie liefert XANES jedoch keine Informationen über die Form und Breite von Paarverteilungsfunktionen. Die Hochtemperatur EXAFS-Untersuchungen von Y zeigen Änderungen der lokalen Struktur oberhalb der Glasübergangstemperatur an, welche sich vordergründig auf eine thermisch induzierte Erhöhung des mittleren Y-O Abstandes zurückführen lassen. Allerdings zeigt ein Vergleich der Y-O Abstände für Zusammensetzungen mit einem ASI von 0.115 bzw. 0.755, ermittelt bei Raumtemperatur und TG, dass der im Glas beobachtete strukturelle Unterschied entlang der Zusammensetzungsserie in der Schmelze noch stärker ausfallen kann, als bisher für die Gläser angenommen wurde. Die direkte Korrelation der Verteilungsdaten von Prowatke und Klemme (2005) mit den strukturellen Änderungen der Schmelzen offenbart für Y eine lineare Korrelation, wohingegen Yb und Gd eine nicht lineare Beziehung zeigen. Aufgrund seines Ionenradius und seiner Ladung wird das 6-fach koordinierte SEE in den niedriger polymerisierten Schmelzen bevorzugt durch nicht-brückenbildende Sauerstoffatome koordiniert, um stabile Konfigurationen zu bilden. In den höher polymerisierten Schmelzen mit ASI-Werten in der Nähe von 1 ist 6-fache Koordination nicht möglich, da fast nur noch brückenbildende Sauerstoffatome zur Verfügung stehen. Die Überbindung von brückenbildenden Sauerstoffatomen um das SEE wird durch Erhöhung der Koordinationszahl und des mittleren SEE-O Abstandes ausgeglichen. Dies bedeutet eine energetisch günstigere Konfiguration in den stärker depolymerisierten Zusammensetzungen, aus welcher die beobachtete Variation des Verteilungskoeffizienten resultiert, welcher sich jedoch für jedes Element stark unterscheidet. Für die haplogranitischen und haplobasaltischen Zusammensetzungen wurde mit Zunahme der Polymerisierung auch eine Zunahme der Koordinationszahl und des durchschnittlichen Bindungsabstands, einhergehend mit der Zunahme der Schiefe und der Asymmetrie der Paarverteilungsfunktion, beobachtet. Dies impliziert, dass das jeweilige SEE mit Zunahme der Polymerisierung auch inkompatibler in diesen Zusammensetzungen wird. Weiterhin zeigt die Zugabe von Wasser, dass die Schmelzen depolymerisieren, was in einer symmetrischeren Paarverteilungsfunktion resultiert, wodurch die Kompatibilität wieder zunimmt. Zusammenfassend zeigt sich, dass die Veränderungen der Schmelzzusammensetzungen in einer Änderung der Polymerisierung der Schmelzen resultieren, die dann einen signifikanten Einfluss auf die lokale Umgebung der SEE hat. Die strukturellen Änderungen lassen sich direkt mit Verteilungsdaten korrelieren, die Trends unterscheiden sich aber stark zwischen leichten, mittleren und schweren SEE. Allerdings konnte diese Studie zeigen, in welcher Größenordnung die Änderungen liegen müssen, um einen signifikanten Einfluss auf den Verteilungskoeffizenten zu haben. Weiterhin zeigt sich, dass der Einfluss der Schmelzzusammensetzung auf die Verteilung der Spurenelemente mit Zunahme der Polymerisierung steigt und daher nicht vernachlässigt werden darf.show moreshow less
  • Knowledge of the local structure around rare earth elements (REE) in silicate and aluminosilicate melts is of fundamental interest for the geochemistry of magmatic processes, particularly for comprehensive understanding of the partitioning processes of REE in magmatic systems. It is generally accepted that mineral-melt partitioning of REE’s is controlled by temperature, pressure, oxygen fugacity (in case of polyvalent cations) and crystal chemistry but less is known about the influence of the melt composition. The aim of this thesis is to establish a relationship between the variation of the REE distribution with the melt composition and the coordination chemistry of this REE in the melt. For this purpose, melt compositions used by Prowatke und Klemme (2005) which show a significant change in the partitioning coefficients between titanite and melt exclusively as a function of melt composition as well as haplogranitic and haplobasaltic melt compositions as a representative of the magmatic systems were doped with La , Gd , Yb and YKnowledge of the local structure around rare earth elements (REE) in silicate and aluminosilicate melts is of fundamental interest for the geochemistry of magmatic processes, particularly for comprehensive understanding of the partitioning processes of REE in magmatic systems. It is generally accepted that mineral-melt partitioning of REE’s is controlled by temperature, pressure, oxygen fugacity (in case of polyvalent cations) and crystal chemistry but less is known about the influence of the melt composition. The aim of this thesis is to establish a relationship between the variation of the REE distribution with the melt composition and the coordination chemistry of this REE in the melt. For this purpose, melt compositions used by Prowatke und Klemme (2005) which show a significant change in the partitioning coefficients between titanite and melt exclusively as a function of melt composition as well as haplogranitic and haplobasaltic melt compositions as a representative of the magmatic systems were doped with La , Gd , Yb and Y and synthesized as glass. The melt compositions systematically vary in aluminum saturationindex ( ASI ), from 0.115 to 0.768 for the Prowatke und Klemme (2005) compositions, from 0.935 to 1.785 for the the haplogranitic composition and from 0.368 to 1.010 for the haplobasaltic composition. Moreover, haplogranitic compositions were synthesized with 4 wt% H2O to study the influence of water on the local structure of REE. To gather information about the local structure of Gd, Yb and Y x-ray absorption spectroscopy was used. While extended x-ray absorption fine structure spectroscopy was used to gather quantitative information of the locale structure around the REE, resonate inelastic x-ray scattering (RIXS) and the extracted high resolution x-ray absorption near edge structure (XANES) was used to gather additional qualitative information on the local environment of La, Gd and Yb in the glasses. Additional high temperature in situ Y-EXAFS was performed to prove, if the local structure of Y above transition region (TG) corresponds to the local structure in the quenched melts. For the analysis of the EXAFS data a new histogram fit was used, which could describe a non-symmetric respectively non-Gauss-shape pair distribution function, as they may occur with a high degree of polymerization or at high temperatures. The results for Y in the Prowatke und Klemme (2005) compositions show an increase of the width and skewness of the Y-O pair distribution function with increasing polymerization, which goes along with an increase of the coordination number from 6 to 8 while average bond length increases by 0.13 Å. A similar trend is also observed for Gd- and Yb-EXAFS spectra. Furthermore, the high resolution XANES for La, Gd and Yb show that structural difference could be revealed, at least half qualitative, in particular for changes of the average bond length to the oxygen atoms. However, compared to the EXAFS method, this method does not provide information about the shape and width of pair distribution functions. The high temperature EXAFS investigation of Y reveal no significant changes in the local structure above TG except for the thermally induced increase in the average Y-O distance. A comparison of the Y-O distances for compositions with an ASI of 0.115 and 0.755 determined at room temperature and TG indicated that the structural changes in the glass along one composition series could be even stronger in the melts. The direct correlation of the partitioning coefficient from Prowatke und Klemme (2005) with the structural changes in the glass reveals for Y a linear correlation, whereas Yb and Gd show a nonlinear relationship. Because of its ionic radius and charge, the REE is preferably 6-fold coordinated by nonbridging oxygen in low polymerized melts to form stable configurations. In highly polymerized melts with an ASI close to 1, 6-fold coordination is not possible because almost only bridging oxygens are available. The over bonding of bridging oxygen atoms around the REE will be compensated via increasing coordination number and the average REE-O distance. This means that the configuration in the more depolymerized compositions is energetically more favorable, so that the observed variation of the partitioning coefficient results from these differences, which is eventually different for each element. For the haplogranitic and haplobasaltic compositions an increase of the skewness and the asymmetry of the pair distribution function with increase of polymerization of the melt was observed which result in an increase of the coordination number and average distance. This implies, that the respective REE is also getting more incompatible with the increase of the asymmetry in this compositions. Furthermore, the addition of water shows that the melts depolymerize, which resulted in a more symmetrical pair distribution function by which the compatibility increases again. Finally, the changes in melt composition result in a change of the polymerization of the melt, which has a significant impact on the local environment of the REE. The structural changes can be directly correlated with distribution data, but the trends differ significantly between light, medium and heavy REE. However, this study was able to show what structural change is required to have a significant impact on the partition coefficient. Furthermore, the influence of melt composition on the distribution of trace elements increase with increase of polymerization and should therefore not be neglected.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Sebastian Simon
URN:urn:nbn:de:kobv:517-opus4-100932
Supervisor(s):Max Wilke
Publication type:Doctoral Thesis
Language:German
Publication year:2016
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2016/11/28
Release date:2017/01/25
Tag:Geochemie; Röntgenabsorptionspektroskopie; Spurenelementverteilung; lokale Struktur
asymmetric pair distribution function; local structure; trace elements; x-ray absorption spectroscopy
Number of pages:xviii, 138
RVK - Regensburg classification:UQ 6400
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.