• search hit 1 of 1
Back to Result List

Identifizierung und Charakterisierung neuer Komponenten der SnRK1-Signaltransduktion in Arabidopsis thaliana

Identification and characterization of novel components of SnRK1-Signalling in Arabidopsis thaliana

  • Für alle Organismen ist die Aufrechterhaltung ihres energetischen Gleichgewichts unter fluktuierenden Umweltbedingungen lebensnotwendig. In Eukaryoten steuern evolutionär konservierte Proteinkinasen, die in Pflanzen als SNF1-RELATED PROTEIN KINASE1 (SnRK1) bezeichnet werden, die Adaption an Stresssignale aus der Umwelt und an die Limitierung von Nährstoffen und zellulärer Energie. Die Aktivierung von SnRK1 bedingt eine umfangreiche transkriptionelle Umprogrammierung, die allgemein zu einer Repression energiekonsumierender Prozesse wie beispielsweise Zellteilung und Proteinbiosynthese und zu einer Induktion energieerzeugender, katabolischer Stoffwechselwege führt. Wie unterschiedliche Signale zu einer generellen sowie teilweise gewebe- und stressspezifischen SnRK1-vermittelten Antwort führen ist bisher noch nicht ausreichend geklärt, auch weil bislang nur wenige Komponenten der SnRK1-Signaltransduktion identifiziert wurden. In dieser Arbeit konnte ein Protein-Protein-Interaktionsnetzwerk um die SnRK1αUntereinheiten aus ArabidopsisFür alle Organismen ist die Aufrechterhaltung ihres energetischen Gleichgewichts unter fluktuierenden Umweltbedingungen lebensnotwendig. In Eukaryoten steuern evolutionär konservierte Proteinkinasen, die in Pflanzen als SNF1-RELATED PROTEIN KINASE1 (SnRK1) bezeichnet werden, die Adaption an Stresssignale aus der Umwelt und an die Limitierung von Nährstoffen und zellulärer Energie. Die Aktivierung von SnRK1 bedingt eine umfangreiche transkriptionelle Umprogrammierung, die allgemein zu einer Repression energiekonsumierender Prozesse wie beispielsweise Zellteilung und Proteinbiosynthese und zu einer Induktion energieerzeugender, katabolischer Stoffwechselwege führt. Wie unterschiedliche Signale zu einer generellen sowie teilweise gewebe- und stressspezifischen SnRK1-vermittelten Antwort führen ist bisher noch nicht ausreichend geklärt, auch weil bislang nur wenige Komponenten der SnRK1-Signaltransduktion identifiziert wurden. In dieser Arbeit konnte ein Protein-Protein-Interaktionsnetzwerk um die SnRK1αUntereinheiten aus Arabidopsis AKIN10/AKIN11 etabliert werden. Dadurch wurden zunächst Mitglieder der pflanzenspezifischen DUF581-Proteinfamilie als Interaktionspartner der SnRK1α-Untereinheiten identifiziert. Diese Proteine sind über ihre konservierte DUF581Domäne, in der ein Zinkfinger-Motiv lokalisiert ist, fähig mit AKIN10/AKIN11 zu interagieren. In planta Ko-Expressionsanalysen zeigten, dass die DUF581-Proteine eine Verschiebung der nucleo-cytoplasmatischen Lokalisierung von AKIN10 hin zu einer nahezu ausschließlichen zellkernspezifischen Lokalisierung begünstigen sowie die Ko-Lokalisierung von AKIN10 und DUF581-Proteinen im Nucleus. In Bimolekularen Fluoreszenzkomplementations-Analysen konnte die zellkernspezifische Interaktion von DUF581-Proteinen mit SnRK1α-Untereinheiten in planta bestätigt werden. Außerhalb der DUF581-Domäne weisen die Proteine einander keine große Sequenzähnlichkeit auf. Aufgrund ihrer Fähigkeit mit SnRK1 zu interagieren, dem Fehlen von SnRK1Phosphorylierungsmotiven sowie ihrer untereinander sehr variabler gewebs-, entwicklungs- und stimulusspezifischer Expression wurde für DUF581-Proteine eine Funktion als Adaptoren postuliert, die unter bestimmten physiologischen Bedingungen spezifische Substratproteine in den SnRK1-Komplex rekrutieren. Auf diese Weise könnten DUF581Proteine die Interaktion von SnRK1 mit deren Zielproteinen modifizieren und eine Feinjustierung der SnRK1-Signalweiterleitung ermöglichen. Durch weiterführende Interaktionsstudien konnten DUF581-interagierende Proteine darunter Transkriptionsfaktoren, Proteinkinasen sowie regulatorische Proteine gefunden werden, die teilweise ebenfalls Wechselwirkungen mit SnRK1α-Untereinheiten aufzeigten. Im Rahmen dieser Arbeit wurde eines dieser Proteine für das eine Beteiligung an der SnRK1Signalweiterleitung als Transkriptionsregulator vermutet wurde näher charakterisiert. STKR1 (STOREKEEPER RELATED 1), ein spezifischer Interaktionspartner von DUF581-18, gehört zu einer pflanzenspezifischen Leucin-Zipper-Transkriptionsfaktorfamilie und interagiert in Hefe sowie in planta mit SnRK1. Die zellkernspezifische Interaktion von STKR1 und AKIN10 in Pflanzen unterstützt die Vermutung der kooperativen Regulation von Zielgenen. Weiterhin stabilisierte die Anwesenheit von AKIN10 die Proteingehalte von STKR1, das wahrscheinlich über das 26S Proteasom abgebaut wird. Da es sich bei STKR1 um ein Phosphoprotein mit SnRK1-Phosphorylierungsmotiv handelt, stellt es sehr wahrscheinlich ein SnRK1-Substrat dar. Allerdings konnte eine SnRK1-vermittelte Phosphorylierung von STKR1 in dieser Arbeit nicht gezeigt werden. Der Verlust von einer Phosphorylierungsstelle beeinflusste die Homo- und Heterodimerisierungsfähigkeit von STKR1 in Hefeinteraktionsstudien, wodurch eine erhöhte Spezifität der Zielgenregulation ermöglicht werden könnte. Außerdem wurden Arabidopsis-Pflanzen mit einer veränderten STKR1-Expression phänotypisch, physiologisch und molekularbiologisch charakterisiert. Während der Verlust der STKR1-Expression zu Pflanzen führte, die sich kaum von Wildtyp-Pflanzen unterschieden, bedingte die konstitutive Überexpression von STKR1 ein stark vermindertes Pflanzenwachstum sowie Entwicklungsverzögerungen hinsichtlich der Blühinduktion und Seneszenz ähnlich wie sie auch bei SnRK1α-Überexpression beschrieben wurden. Pflanzen dieser Linien waren nicht in der Lage Anthocyane zu akkumulieren und enthielten geringere Gehalte an Chlorophyll und Carotinoiden. Neben einem erhöhten nächtlichen Stärkeumsatz waren die Pflanzen durch geringere Saccharosegehalte im Vergleich zum Wildtyp gekennzeichnet. Eine Transkriptomanalyse ergab, dass in den STKR1-überexprimierenden Pflanzen unter Energiemangelbedingungen, hervorgerufen durch eine verlängerte Dunkelphase, eine größere Anzahl an Genen im Vergleich zum Wildtyp differentiell reguliert war als während der Lichtphase. Dies spricht für eine Beteiligung von STKR1 an Prozessen, die während der verlängerten Dunkelphase aktiv sind. Ein solcher ist beispielsweise die SnRK1-Signaltransduktion, die unter energetischem Stress aktiviert wird. Die STKR1Überexpression führte zudem zu einer verstärkten transkriptionellen Induktion von Abwehrassoziierten Genen sowie NAC- und WRKY-Transkriptionsfaktoren nach verlängerter Dunkelphase. Die Transkriptomdaten deuteten auf eine stimulusunabhängige Induktion von Abwehrprozessen hin und konnten eine Erklärung für die phänotypischen und physiologischen Auffälligkeiten der STKR1-Überexprimierer liefern.show moreshow less
  • For all living organism maintenance of energy homeostasis under changing environmental conditions is indispensable. In eukaryotes, evolutionary conserved protein kinases, such as the SNF1-RELATED PROTEIN KINASE1 (SnRK1) in plants, integrate environmental stress signals, nutrient availability and energy depletion during adaptational responses. Activation of SnRK1 triggers a broad transcriptional reprogramming, which in general represses energy consuming processes such as proliferation and protein biosynthesis and induces energy producing catabolic pathways. Although SnRK1 acts as a convergent point for many different environmental and metabolic signals to control growth and development, it is currently unknown how these many different signals could be translated into a cell-type or stimulusspecific response. This is also due to the fact that only a few proteins participating in SnRK1 signal transduction have yet been identified. In this work, a protein-protein interaction network of the Arabidopsis SnRK1α-subunits AKIN10/AKIN11 wasFor all living organism maintenance of energy homeostasis under changing environmental conditions is indispensable. In eukaryotes, evolutionary conserved protein kinases, such as the SNF1-RELATED PROTEIN KINASE1 (SnRK1) in plants, integrate environmental stress signals, nutrient availability and energy depletion during adaptational responses. Activation of SnRK1 triggers a broad transcriptional reprogramming, which in general represses energy consuming processes such as proliferation and protein biosynthesis and induces energy producing catabolic pathways. Although SnRK1 acts as a convergent point for many different environmental and metabolic signals to control growth and development, it is currently unknown how these many different signals could be translated into a cell-type or stimulusspecific response. This is also due to the fact that only a few proteins participating in SnRK1 signal transduction have yet been identified. In this work, a protein-protein interaction network of the Arabidopsis SnRK1α-subunits AKIN10/AKIN11 was established. Thereby, members of the plant specific DUF581 protein family were identified as SnRK1α interacting proteins. The highly conserved DUF581 domain possesses a zinc finger motif and mediates the interaction with AKIN10/AKIN11. In planta co-expression of AKIN10 with DUF581 proteins leads to a shift of subcellular localization from a nucleo-cytoplasmic distribution of both proteins to a nearly exclusive nuclear localization and show that AKIN10 and DUF581 proteins co-localize in nuclei of plant cells. Bimolecular fluorescence complementation analysis revealed that SnRK1α-subunits interact with DUF581 proteins in plants. Apart from their DUF581 domain there is no strong sequence similarity between DUF581 proteins. Because of their ability to interact with SnRK1, the absence of SnRK1-target motifs and their highly variable transcriptional regulation in a tissue-, development- or stimuli-specific manner, it is possible that DUF581 proteins act as adaptor proteins recruiting substrate proteins into the SnRK1 complex under defined physiological conditions. That said, DUF581 could modify the interaction of SnRK1 with its target proteins and facilitate fine-tuning of SnRK1 signal transduction. Additional interaction studies revealed further DUF581 interacting proteins such as transcription factors, protein kinases and regulatory proteins that in part were also able to interact with SnRK1α. One of these proteins which is supposed to be involved in SnRK1 signaling as a transcriptional regulator was characterized in more detail: Arabidopsis STKR1 (STOREKEPPER RELATED 1) a DUF581-18 interaction partner belongs to a plant specific leucine zipper transcription factor family and is able to interact with SnRK1 in yeast and in planta. Co-operative regulation of target genes by STKR1 and AKIN10 is supported by the specific interaction of these proteins inside the plant nucleus. Furthermore, AKIN10 seems to stabilize protein levels of STKR1 in that it attenuates its proteasomal turnover. Due to the fact that STKR1 is a phosphoprotein with putative SnRK1 target motives it is likely a SnRK1 substrate. However, SnRK1 mediated phosphorylation of STKR1 could not be shown in this work. Though, interaction studies in yeast revealed that a loss of putative phosphorylation sites influences the ability of homo- and hetero-dimerization of STKR1, possibly allowing a higher specificity during target gene regulation. Another part of this work was the phenotypic, physiological and molecular characterization of Arabidopsis plants with altered expression of STKR1. Whereas the absence of STKR1 expression results in plants without strong phenotypic abnormality compared to wildtype the overexpression leads to a strong decrease in plant growth as well as developmental retardations regarding to the induction of flowering and senescence reminiscent of SnRK1overexpressing plants. Plants of these lines were not able to accumulate anthocyanins and also contain reduced levels of chlorophyll and carotenoids. Besides a higher starch turnover in dark, these plants displayed lower sucrose contents. Microarray analysis revealed that under energy deficit stress, induced by extended darkness, a higher number of genes were differentially regulated in plants overexpressing STKR1 compared to wildtype than during the light period. This observation argues for a participation of STKR1 in processes, which are active under extended darkness, being the case for SnRK1 signaling which is strongly activated under energy deficient stress. Overexpression of STKR1 also leads to transcriptional induction of genes associated with defense like NAC and WRKY transcription factors after an extended dark. Results of transcriptome data analysis indicate a stimulus independent induction of defense associated processes and are suitable to explain phenotypical and physiological abnormality of the STKR1 overexpressing lines.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Madlen Nietzsche
URN:urn:nbn:de:kobv:517-opus4-98678
Advisor:Frederik Börnke
Document Type:Doctoral Thesis
Language:German
Year of Completion:2016
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2016/09/20
Release Date:2016/11/22
Tag:Arabidopsis thaliana; Energiemangel; Phosphorylierung; Proteinkinase; SnRK1
energy starvation; phosphorylation; protein kinase
Pagenumber:xi, 182
RVK - Regensburg Classification:WE 2402, WN 1950
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht