The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 35
Back to Result List

Transient changes of landslide rates after earthquakes

  • Earthquakes impart an impressive force on epicentral landscapes, with immediate catastrophic hillslope response. However, their legacy on geomorphic process rates remains poorly constrained. We have determined the evolution of landslide rates in the epicentral areas of four intermediate to large earthquakes (M-w, 6.6-7.6). In each area, landsliding correlates with the cumulative precipitation during a given interval. Normalizing for this meteorological forcing, landslide rates have been found to peak after an earthquake and decay to background values in 1-4 yr, with the decay time scale probably proportional to the earthquake magnitude. The transient pulse of landsliding is not related to external forcing such as rainfall or aftershocks, and we tentatively attribute it to the reduction and subsequent recovery of ground strength. Observed geomorphic trends are not linked with groundwater level changes or root system damage, both of which could affect substrate strength. We propose that they are caused by reversible damage of rock massEarthquakes impart an impressive force on epicentral landscapes, with immediate catastrophic hillslope response. However, their legacy on geomorphic process rates remains poorly constrained. We have determined the evolution of landslide rates in the epicentral areas of four intermediate to large earthquakes (M-w, 6.6-7.6). In each area, landsliding correlates with the cumulative precipitation during a given interval. Normalizing for this meteorological forcing, landslide rates have been found to peak after an earthquake and decay to background values in 1-4 yr, with the decay time scale probably proportional to the earthquake magnitude. The transient pulse of landsliding is not related to external forcing such as rainfall or aftershocks, and we tentatively attribute it to the reduction and subsequent recovery of ground strength. Observed geomorphic trends are not linked with groundwater level changes or root system damage, both of which could affect substrate strength. We propose that they are caused by reversible damage of rock mass and/or loosening of regolith. Qualitative accounts of ground cracking due to strong ground motion abound, and our observations are circumstantial evidence of its potential importance in setting landscape sensitivity to meteorological forcing after large earthquakes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Odin MarcORCiDGND, Niels HoviusORCiDGND, Patrick Meunier, Taro Uchida, Shin-Ichiro Hayashi
DOI:https://doi.org/10.1130/G36961.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:43
Issue:10
Number of pages:4
First page:883
Last Page:886
Funding institution:European Union [264517]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.