• search hit 6 of 7
Back to Result List

Smoothing Spline ANOVA decomposition of arbitrary Splines

  • The Smoothing Spline ANOVA (SS-ANOVA) requires a specialized construction of basis and penalty terms in order to incorporate prior knowledge about the data to be fitted. Typically, one resorts to the most general approach using tensor product splines. This implies severe constraints on the correlation structure, i.e. the assumption of isotropy of smoothness can not be incorporated in general. This may increase the variance of the spline fit, especially if only a relatively small set of observations are given. In this article, we propose an alternative method that allows to incorporate prior knowledge without the need to construct specialized bases and penalties, allowing the researcher to choose the spline basis and penalty according to the prior knowledge of the observations rather than choosing them according to the analysis to be done. The two approaches are compared with an artificial example and with analyses of fixation durations during reading.

Download full text files

  • pmnr537.pdfeng

    SHA-1: d0a8327975751f471d1a42cb6ee7a3c17d2ca415

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Hannes MatuschekORCiDGND, Reinhold KlieglORCiDGND, Matthias HolschneiderORCiDGND
Parent Title (English):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):an application to eye movements in reading
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (537)
Document Type:Postprint
Date of first Publication:2019/01/21
Year of Completion:2015
Publishing Institution:Universität Potsdam
Release Date:2019/01/21
Source:PLOS ONE 10 (2015) 3, Art. e0119165 DOI: 10.1371/journal.pone.0119165
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer Review:Referiert
Publication Way:Open Access
Grantor:Public Library of Science (PLOS)
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Bibliographieeintrag der Originalveröffentlichung/Quelle