• search hit 3 of 299
Back to Result List

3D curvature and its role on tissue organization

  • Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work,Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces.show moreshow less
  • Formänderung ist ein fundamentaler Vorgang während der embryonalen Entwicklung und der Regeneration von Geweben und Organen. Dieser Prozess wird von Zellen reguliert die in einer komplexen Umgebung von biochemischen und physikalischen Signalen eingebettet sind. Die räumliche Begrenzung der Zellen führt dabei zu Unterschieden in der Gewebemechanik und der räumlichen Verteilung von Kräften und hat damit einen Einfluss auf die Organisation der Gewebestruktur. Ein Verständnis der Organisationsprozesse von Geweben hat weitreichende Konsequenzen im Hinblick auf das Verständnis von Heilungsprozessen und der Entwicklung von Organen bis hin zu medizinischen Anwendungen wie der Entwicklung von Implantaten. Die vorliegende Arbeit zielt auf ein besseres Verständnis wie das kollektive Verhalten von Gewebezellen von der dreidimensionalen Krümmung der Umgebung beeinflusst wird. Die bisherige Forschung war bislang limitiert auf flache Oberflächen oder auf Substrate in denen zumindest eine der beiden Hauptkrümmungen Null ist. In dieser Arbeit wurdeFormänderung ist ein fundamentaler Vorgang während der embryonalen Entwicklung und der Regeneration von Geweben und Organen. Dieser Prozess wird von Zellen reguliert die in einer komplexen Umgebung von biochemischen und physikalischen Signalen eingebettet sind. Die räumliche Begrenzung der Zellen führt dabei zu Unterschieden in der Gewebemechanik und der räumlichen Verteilung von Kräften und hat damit einen Einfluss auf die Organisation der Gewebestruktur. Ein Verständnis der Organisationsprozesse von Geweben hat weitreichende Konsequenzen im Hinblick auf das Verständnis von Heilungsprozessen und der Entwicklung von Organen bis hin zu medizinischen Anwendungen wie der Entwicklung von Implantaten. Die vorliegende Arbeit zielt auf ein besseres Verständnis wie das kollektive Verhalten von Gewebezellen von der dreidimensionalen Krümmung der Umgebung beeinflusst wird. Die bisherige Forschung war bislang limitiert auf flache Oberflächen oder auf Substrate in denen zumindest eine der beiden Hauptkrümmungen Null ist. In dieser Arbeit wurde daher das Gewebewachstum von MC3T3-E1 Pre-Osteoblasten auf Oberflächen mit konstanter mittlerer Krümmung studiert. Ein wichtiger Teil der Arbeit war die Entwicklung von Substraten mit kontrollierter mittlerer Krümmung und deren Visualisierung in 3D. Es wurde gezeigt, dass sich die Oberflächen- spannung von Polymerlösungen nutzen lässt um eben solche Substrate zu erzeugen. Mit Hilfe dieser Substrate wurde gezeigt, dass die mittlere Krümmung der Oberfläche einen entscheidenden Einfluss auf die Wachstumsrate und die Organisation der Gewebestruktur hat. Es konnte nicht nur gezeigt werden dass die Menge an gebildetem Gewebe von der mittleren Krümmung abhängig ist, sondern auch dass die Oberfläche des Gewebes sich dabei wie eine Flüssigkeit verhält und dem Laplace-Young Gesetz folgt. Es wurde beobachtet dass sich mehr Gewebe auf konkaven als auf flachen oder konvexen Oberflächen gebildet hat. Basierend auf diesen Beobachtungen wurde ein analytisches Modell entwickelt, welches die Wachstumsrate als Funktion der mittleren Krümmung beschreibt und mit Hilfe dessen sich das Gewebewachstum erfolgreich beschreiben lässt. Dieses Modell kann auch die Ergebnisse früherer Arbeiten reproduzieren, in denen Gewebe in prismatischen Poren kultiviert wurden. Ein weiterer Teil der Arbeit befasste sich mit der Struktur des Gewebes, welche einen Einfluss auf die späteren mechanischen Eigenschaften des maturierten Knochengewebes hat. Da die extrazelluläre Matrix des Gewebes von den Zellen gebildet wird, hat die Orientierung der Zellen einen entscheidenden Einfluss auf die Ausrichtung der Gewebefasern. Außerdem wurde vor kurzem gezeigt, dass sich manche Zellen wie Flüssigkristalle anordnen können. Basierend auf dieser Beobachtung wurde ein Computermodell aktiver Partikel entwickelt, mit dessen Hilfe sich der Einfluss des kollektiven Verhaltens der Zellen auf dreidimensional gekrümmten Oberflächen abstrahieren lässt. Es konnte dabei gezeigt werden, dass die dreidimensionale Krümmung einen entscheidenden Einfluss auf die Selbstorganisation dieser Partikel hat und gibt damit erste Einblicke in ein mögliches Organisationsverhalten von Zellen auf 3D Oberflächen.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Sebastian EhrigORCiDGND
Advisor:Peter Fratzl, John William Chapman Dunlop
Document Type:Doctoral Thesis
Language:English
Year of first Publication:2017
Year of Completion:2017
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2017/09/29
Release Date:2017/10/26
Tag:biophysics; mechanobiology; tissue engineering
Pagenumber:132
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 87.00.00 Biological and medical physics