• search hit 1 of 36
Back to Result List

A MUSE map of the central Orion Nebula (M 42)

  • We present a new integral field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a spatial size of similar to 5'9 x 4'9 (corresponding to similar to 0.76 x 0.63 pc(2)) and a contiguous wavelength coverage of 4595 ... 9366 angstrom, spatially sampled at 0 ''.2. We provide two versions with a sampling of 1.25 angstrom and 0.85 angstrom in dispersion direction. Together with variance cubes these files have a size of 75 and 110 GiB on disk. They are the largest integral field mosaics to date in terms of information content. We make them available for use in the community. To validate this dataset, we compare world coordinates, reconstructed magnitudes, velocities, and absolute and relative emission line fluxes to the literature values and find excellent agreement. We derive a 2D map of extinction and present de-reddened flux maps of several individual emission lines and ofWe present a new integral field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a spatial size of similar to 5'9 x 4'9 (corresponding to similar to 0.76 x 0.63 pc(2)) and a contiguous wavelength coverage of 4595 ... 9366 angstrom, spatially sampled at 0 ''.2. We provide two versions with a sampling of 1.25 angstrom and 0.85 angstrom in dispersion direction. Together with variance cubes these files have a size of 75 and 110 GiB on disk. They are the largest integral field mosaics to date in terms of information content. We make them available for use in the community. To validate this dataset, we compare world coordinates, reconstructed magnitudes, velocities, and absolute and relative emission line fluxes to the literature values and find excellent agreement. We derive a 2D map of extinction and present de-reddened flux maps of several individual emission lines and of diagnostic line ratios. We estimate physical properties of the Orion Nebula, using the emission line ratios [N II] and [S III] (for the electron temperature T-e) and [S II] and [Cl III] (for the electron density N-e), and show 2D images of the velocity measured from several bright emission lines.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Peter Michael WeilbacherORCiDGND, Ana Monreal-Ibero, Wolfram Kollatschny, Adam Ginsburg, Anna F. McLeod, Sebastian Kamann, Christer Sandin, Ralf Palsa, Lutz WisotzkiORCiDGND, Roland Bacon, Fernando Selman, Jarle BrinchmannORCiD, Joseph Caruana, Andreas Kelz, Thomas Martinsson, Arlette Pecontal-Rousset, Johan Richard, Martin WendtORCiDGND
DOI:https://doi.org/10.1051/0004-6361/201526529
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:H II regions; ISM: individual objects: M 42; open clusters and associations: individual: Trapezium cluster
Volume:582
Number of pages:16
Funding institution:BMBF Verbundforschung [05A14BAC, 05A14MGA]; Agence Nationale de la Recherche through the STILISM project [ANR-12-BS05-0016-02]; ERC [339659-MUSICOS]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.