• search hit 1 of 2
Back to Result List

Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s

  • The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymersThe performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performancesshow moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Achmad Zen, Marina Saphiannikova, Dieter NeherORCiDGND, Udom Asawapirom, Ullrich Scherf
ISSN:0897-4756
Document Type:Article
Language:English
Year of first Publication:2005
Year of Completion:2005
Release Date:2017/03/24
Source:Chemistry of Materials. - ISSN 0897-4756. - 17 (2005), 4, S. 781 - 786
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Institution name at the time of publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik