• search hit 8 of 0
Back to Result List

Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin

  • The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar toThe Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar to 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a lateor post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 +/- 0.2 mm yr(-1) are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, similar to 10(4)-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin. (C) 2014 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jan H. Bloethe, Henry Munack, Oliver KorupORCiDGND, Alexander Fuelling, Eduardo Garzanti, Alberto Resentini, Peter W. Kubik
DOI:https://doi.org/10.1016/j.quascirev.2014.04.011
ISSN:0277-3791
Title of parent work (English):Quaternary science reviews : the international multidisciplinary research and review journal
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Erosion; Glaciation; Himalaya; Indus; Lake sediment; Valley fills
Volume:94
Number of pages:18
First page:102
Last Page:119
Funding institution:German Research Foundation [KO3937/2]; Potsdam Research Cluster for Georisk Analysis; Environmental Change and Sustainability (PROGRESS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.