• search hit 1 of 0
Back to Result List

DFTopoSim modeling topographically-controlled deposition of subseismic scale sandstone packages within a mass transport dominated deep-water channel belt

  • Facies bodies in geostatistical models of deep-water depositional environments generally represent channel-levee-overbank-lobe morphologies. Such models adequately capture one set of the erosional and depositional processes resulting from turbidity currents traveling downslope to the ocean basin floor. However, depositional morphologies diverge from the straight forward channel-levee-overbank-lobe paradigm when the topography of the slope or the shape of the basin impacts the timing and magnitude of turbidity current deposition. Subaqueous mass-transport-deposits (MTDs) present the need for an exception to the channel-levee-overbank-lobe archetype. Irregular surface topography of subaqueous MTDs can play a primary role in controlling sand deposition from turbidity currents. MTD topography creates mini-basins in which sand accumulates in irregularly-shaped deposits. These accumulations are difficult to laterally correlate using well-log data due to their variable and unpredictable shape and size. Prediction is further complicatedFacies bodies in geostatistical models of deep-water depositional environments generally represent channel-levee-overbank-lobe morphologies. Such models adequately capture one set of the erosional and depositional processes resulting from turbidity currents traveling downslope to the ocean basin floor. However, depositional morphologies diverge from the straight forward channel-levee-overbank-lobe paradigm when the topography of the slope or the shape of the basin impacts the timing and magnitude of turbidity current deposition. Subaqueous mass-transport-deposits (MTDs) present the need for an exception to the channel-levee-overbank-lobe archetype. Irregular surface topography of subaqueous MTDs can play a primary role in controlling sand deposition from turbidity currents. MTD topography creates mini-basins in which sand accumulates in irregularly-shaped deposits. These accumulations are difficult to laterally correlate using well-log data due to their variable and unpredictable shape and size. Prediction is further complicated because sandstone bodies typical of this setting are difficult to resolve in seismic-reflection data. An event-based model is presented, called DFTopoSim, which simulates debris flows and turbidity currents. The accommodation space on top of and between debris flow lobes is filled in by sand from turbidity currents. When applied to a subsurface case in the Molasse Basin of Upper Austria, DFTopoSim predicts sand packages consistent with observations from core, well, and seismic data and the interpretation of the sedimentologic processes. DFTopoSim expands the set of available geostatistical deep-water depositional models beyond the standard channel-levee-overbank-lobe model.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lisa Stright, Anne BernhardtORCiDGND, Alexandre Boucher
DOI:https://doi.org/10.1007/s11004-013-9444-7
ISSN:1874-8961
Title of parent work (English):Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences
Publisher:Springer
Place of publishing:Heidelberg
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Deep-marine sedimentology; Event-based modeling; Facies modeling; Geostatistics; Submarine channel
Volume:45
Issue:3
Number of pages:20
First page:277
Last Page:296
Funding institution:Rohol-Aufsuchungs A.G. (RAG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.