• search hit 1 of 0
Back to Result List

Hyperspectral modeling of ecological indicators - A new approach for monitoring former military training areas

  • Military areas are valuable habitats and refuges for rare and endangered plants and animals. We developed a new approach applying innovative methods of hyperspectral remote sensing to bridge the existing gap between remote sensing technology and the demands of the nature conservation community. Remote sensing has already proven to be a valuable monitoring instrument. However, the approaches lack the consideration of the demands of applied nature conservation which includes the legal demands of the EU Habitat Directive. Following the idea of the Vital Signs Monitoring in the USA, we identified a subset of the highest priority monitoring indicators for our study area. We analyzed continuous spectral response curves and tested the measurability of N=19 indicators on the basis of complexity levels aggregated from extensive vegetation assemblages. The spectral differentiability for the floristic as well as faunistic indicators revealed values up to 100% accuracy. We point out difficulties when it comes to distinguishing faunistic habitatMilitary areas are valuable habitats and refuges for rare and endangered plants and animals. We developed a new approach applying innovative methods of hyperspectral remote sensing to bridge the existing gap between remote sensing technology and the demands of the nature conservation community. Remote sensing has already proven to be a valuable monitoring instrument. However, the approaches lack the consideration of the demands of applied nature conservation which includes the legal demands of the EU Habitat Directive. Following the idea of the Vital Signs Monitoring in the USA, we identified a subset of the highest priority monitoring indicators for our study area. We analyzed continuous spectral response curves and tested the measurability of N=19 indicators on the basis of complexity levels aggregated from extensive vegetation assemblages. The spectral differentiability for the floristic as well as faunistic indicators revealed values up to 100% accuracy. We point out difficulties when it comes to distinguishing faunistic habitat requirements of several species adapted to dry open landscapes, which in this case results in OVERALL ACCURACY of 67, 87-95, and 35% in the error matrix. In summary, we provide an applicable and feasible method to facilitating monitoring military areas by hyperspectral remote sensing in the following. (C) 2014 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Laura Luft, Carsten Neumann, Matthias Freude, Niels BlaumORCiDGND, Florian JeltschORCiDGND
DOI:https://doi.org/10.1016/j.ecolind.2014.06.025
ISSN:1470-160X
ISSN:1872-7034
Title of parent work (English):Ecological indicators : integrating monitoring, assessment and management
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Ecological health; Fauna; Flora; Hyperspectral remote sensing; Military conversion; Natura 2000 monitoring
Volume:46
Number of pages:22
First page:264
Last Page:285
Funding institution:University of Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.