• search hit 3 of 0
Back to Result List

Logic tree branch weights and probabilities summing up to one is not enough

  • Logic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of one's preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of "model quality," which are then subsequentlyLogic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of one's preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of "model quality," which are then subsequently normalized to sum up to unity, will with increasing number of models inevitably lead to an apparent insensitivity of hazard curves on the logic-tree branch weights, which may even be mistaken for robustness of the results. Finally, we argue that assigning logic-tree branch weights in a sequential fashion may improve their logical consistency.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Frank ScherbaumORCiDGND, Nicolas M. Kühn
DOI:https://doi.org/10.1193/1.3652744
ISSN:8755-2930
Title of parent work (English):Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute
Publisher:Earthquake Engineering Research Institute
Place of publishing:Oakland
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Volume:27
Issue:4
Number of pages:15
First page:1237
Last Page:1251
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.