The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 5325
Back to Result List

Conservative random walks in confining potentials

  • Levy walks are continuous time random walks with spatio-temporal coupling of jump lengths and waiting times, often used to model superdiffusive spreading processes such as animals searching for food, tracer motion in weakly chaotic systems, or even the dynamics in quantum systems such as cold atoms. In the simplest version Levy walks move with a finite speed. Here, we present an extension of the Levy walk scenario for the case when external force fields influence the motion. The resulting motion is a combination of the response to the deterministic force acting on the particle, changing its velocity according to the principle of total energy conservation, and random velocity reversals governed by the distribution of waiting times. For the fact that the motion stays conservative, that is, on a constant energy surface, our scenario is fundamentally different from thermal motion in the same external potentials. In particular, we present results for the velocity and position distributions for single well potentials of different steepness.Levy walks are continuous time random walks with spatio-temporal coupling of jump lengths and waiting times, often used to model superdiffusive spreading processes such as animals searching for food, tracer motion in weakly chaotic systems, or even the dynamics in quantum systems such as cold atoms. In the simplest version Levy walks move with a finite speed. Here, we present an extension of the Levy walk scenario for the case when external force fields influence the motion. The resulting motion is a combination of the response to the deterministic force acting on the particle, changing its velocity according to the principle of total energy conservation, and random velocity reversals governed by the distribution of waiting times. For the fact that the motion stays conservative, that is, on a constant energy surface, our scenario is fundamentally different from thermal motion in the same external potentials. In particular, we present results for the velocity and position distributions for single well potentials of different steepness. The observed dynamics with its continuous velocity changes enriches the theory of Levy walk processes and will be of use in a variety of systems, for which the particles are externally confined.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bartlomiej DybiecORCiD, Karol CapalaORCiD, Aleksei V. ChechkinORCiDGND, Ralf MetzlerORCiDGND
DOI:https://doi.org/10.1088/1751-8121/aaefc2
ISSN:1751-8113
ISSN:1751-8121
Title of parent work (English):Journal of physics : A, Mathematical and theoretical
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2018/11/30
Publication year:2018
Release date:2021/04/21
Tag:Levy flight; Levy walk; conservative random walks
Volume:52
Issue:1
Number of pages:25
Funding institution:Polish National Science Center [2014/13/B/ST2/02014]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [ME 1535/6-1, ME 1535/7-1]; Foundation for Polish Science within an Alexander von Humboldt Polish Honorary Research Scholarship
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.