• search hit 10 of 2886
Back to Result List

Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear

  • Quality attributes of fruit determine its acceptability by the retailer and consumer. The objective of this work was to investigate the potential of absorption (μa) and reduced scattering (μs’) coefficients of European pear to analyze its fruit flesh firmness and soluble solids content (SSC). The absolute reference values, μa* (cm−1) and μs’* (cm−1), of pear were invasively measured, employing multi-spectral photon density wave (PDW) spectroscopy at preselected wavelengths of 515, 690, and 940 nm considering two batches of unripe and overripe fruit. On eight measuring dates during fruit development, μa and μs’ were analyzed non-destructively by means of laser light backscattering imaging (LLBI) at similar wavelengths of 532, 660, and 830 nm by means of fitting according to Farrell’s diffusion theory, using fix reference values of either μa* or μs’*. Both, the μa* and the μa as well as μs’* and μs’ showed similar trends. Considering the non-destructively measured data during fruit development, μa at 660 nm decreased 91 till 141 daysQuality attributes of fruit determine its acceptability by the retailer and consumer. The objective of this work was to investigate the potential of absorption (μa) and reduced scattering (μs’) coefficients of European pear to analyze its fruit flesh firmness and soluble solids content (SSC). The absolute reference values, μa* (cm−1) and μs’* (cm−1), of pear were invasively measured, employing multi-spectral photon density wave (PDW) spectroscopy at preselected wavelengths of 515, 690, and 940 nm considering two batches of unripe and overripe fruit. On eight measuring dates during fruit development, μa and μs’ were analyzed non-destructively by means of laser light backscattering imaging (LLBI) at similar wavelengths of 532, 660, and 830 nm by means of fitting according to Farrell’s diffusion theory, using fix reference values of either μa* or μs’*. Both, the μa* and the μa as well as μs’* and μs’ showed similar trends. Considering the non-destructively measured data during fruit development, μa at 660 nm decreased 91 till 141 days after full bloom (dafb) from 1.49 cm−1 to 0.74 cm−1 due to chlorophyll degradation. At 830 nm, μa only slightly decreased from 0.41 cm−1 to 0.35 cm−1. The μs’ at all wavelengths revealed a decreasing trend as the fruit developed. The difference measured at 532 nm was most pronounced decreasing from 24 cm−1 to 10 cm−1, while at 660 nm and 830 nm values decreased from 15 cm−1 to 13 cm−1 and from 10 cm−1 to 8 cm−1, respectively. When building calibration models with partial least-squares regression analysis on the optical properties for non-destructive analysis of the fruit SSC, μa at 532 nm and 830 nm resulted in a correlation coefficient of R = 0.66, however, showing high measuring uncertainty. The combination of all three wavelengths gave an enhanced, encouraging R = 0.89 for firmness analysis using μs’ in the freshly picked fruit.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Segun Emmanuel Adebayo, Norhashila Hashim, Roland HassORCiDGND, Oliver ReichGND, Christian Regen, Marvin MünzbergGND, Khalina Abdan, Marsyita Hanafi, Manuela Zude-SasseORCiD
DOI:https://doi.org/10.1016/j.postharvbio.2017.04.004
ISSN:0925-5214
ISSN:1873-2356
Title of parent work (English):Postharvest Biology and Technology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2017/04/28
Publication year:2017
Release date:2022/04/13
Tag:Absorption; Non-destructive; Pear; Quality; Scattering
Volume:130
Number of pages:8
First page:56
Last Page:63
Funding institution:German Federal Ministry of Education and Research [03Z22AN12]; German Federal State of Brandenburg; Ministry of Science, Technology and Innovation, Malaysia under a Science Fund research grant [5450728]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.