The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 30
Back to Result List

Bayesian analysis of the modified Omori law

  • In order to examine variations in aftershock decay rate, we propose a Bayesian framework to estimate the {K, c, p}-values of the modified Omori law (MOL), lambda(t) = K(c + t)(-p). The Bayesian setting allows not only to produce a point estimator of these three parameters but also to assess their uncertainties and posterior dependencies with respect to the observed aftershock sequences. Using a new parametrization of the MOL, we identify the trade-off between the c and p-value estimates and discuss its dependence on the number of aftershocks. Then, we analyze the influence of the catalog completeness interval [t(start), t(stop)] on the various estimates. To test this Bayesian approach on natural aftershock sequences, we use two independent and non-overlapping aftershock catalogs of the same earthquakes in Japan. Taking into account the posterior uncertainties, we show that both the handpicked (short times) and the instrumental (long times) catalogs predict the same ranges of parameter values. We therefore conclude that the same MOLIn order to examine variations in aftershock decay rate, we propose a Bayesian framework to estimate the {K, c, p}-values of the modified Omori law (MOL), lambda(t) = K(c + t)(-p). The Bayesian setting allows not only to produce a point estimator of these three parameters but also to assess their uncertainties and posterior dependencies with respect to the observed aftershock sequences. Using a new parametrization of the MOL, we identify the trade-off between the c and p-value estimates and discuss its dependence on the number of aftershocks. Then, we analyze the influence of the catalog completeness interval [t(start), t(stop)] on the various estimates. To test this Bayesian approach on natural aftershock sequences, we use two independent and non-overlapping aftershock catalogs of the same earthquakes in Japan. Taking into account the posterior uncertainties, we show that both the handpicked (short times) and the instrumental (long times) catalogs predict the same ranges of parameter values. We therefore conclude that the same MOL may be valid over short and long times.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Matthias HolschneiderORCiDGND, C. Narteau, P. Shebalin, Z. Peng, Danijel SchorlemmerORCiDGND
DOI:https://doi.org/10.1029/2011JB009054
ISSN:2169-9313
ISSN:2169-9356
Title of parent work (English):Journal of geophysical research : Solid earth
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:117
Issue:6089
Number of pages:12
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.