The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 5
Back to Result List

Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan

  • We present paleomagnetic data from the northern flank of the Tianshan range, southeast of Lake Issyk-Kul (Kyrgyzstan). 613 cores were collected in two parallel sections with a total thickness of 960 m (Chon Kyzylsuu, CK) and 990 m Jeti Oguz, JO), as well as 48 cores at six sites in a nearby anticline. Rock magnetic analyses identify both magnetite and hematite in the fluvial-lacustrine sediments. The concentration of both minerals, the magnetite:hematite ratio, and the average magnetite grain size increase upward in both sections. Anisotropy of anhysteretic remanent magnetization defines a tectonic fabric with sub-horizontal maximum axes that parallel the strike direction together with intermediate and minimum axes that streak out about a great circle orthogonal to the maximum axes suggestive of a tectonic fabric emplaced during folding. Stepwise thermal demagnetization isolates interpretable magnetization components in 284 samples that define 26 polarity chrons in CK and 19 in JO. A positive fold test, dual polarities and systematicWe present paleomagnetic data from the northern flank of the Tianshan range, southeast of Lake Issyk-Kul (Kyrgyzstan). 613 cores were collected in two parallel sections with a total thickness of 960 m (Chon Kyzylsuu, CK) and 990 m Jeti Oguz, JO), as well as 48 cores at six sites in a nearby anticline. Rock magnetic analyses identify both magnetite and hematite in the fluvial-lacustrine sediments. The concentration of both minerals, the magnetite:hematite ratio, and the average magnetite grain size increase upward in both sections. Anisotropy of anhysteretic remanent magnetization defines a tectonic fabric with sub-horizontal maximum axes that parallel the strike direction together with intermediate and minimum axes that streak out about a great circle orthogonal to the maximum axes suggestive of a tectonic fabric emplaced during folding. Stepwise thermal demagnetization isolates interpretable magnetization components in 284 samples that define 26 polarity chrons in CK and 19 in JO. A positive fold test, dual polarities and systematic changes in rock-magnetic parameters with depth suggest that the high temperature magnetization component was acquired coevally with deposition. An age model based on a visual magnetostratigraphic correlation of both sections with the geomagnetic polarity time scale defines absolute ages from 26.0 to 13.3 Ma, with a fairly constant sedimentation rate of 9-10 cm/ka. A correlation based on a numerical algorithm arrives at a slightly different conclusion, with deposition ages from 25.2 to 11.0 Ma and sedimentation rates from 5 to 8 cm/ka. In comparison with sedimentation rates found at other magnetostratigraphic sections in the Tianshan realm, we infer that the sedimentary record in this part of the Issyk-Kul Basin precedes the more rapid phase of uplift of the Kyrgyz Tianshan. The onset of deposition and concomitant erosion of the adjacent Terskey Range is in good agreement with independent assessments of the exhumation history of this mountain range, with erosion increasing at 25-20 Ma and accelerating after 11-13 Ma. (C) 2014 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michael R. Wack, Stuart A. Gilder, Euan A. Macaulay, Edward SobelORCiDGND, Julien Charreau, Alexander Mikolaichuk
DOI:https://doi.org/10.1016/j.tecto.2014.03.030
ISSN:0040-1951
ISSN:1879-3266
Title of parent work (English):Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Anisotropy of magnetic remanence; Cenozoic; Issyk-Kul; Magnetostratigraphy; Rock magnetism
Volume:629
Number of pages:13
First page:14
Last Page:26
Funding institution:Deutsche Forschungsgemeinschaft [GI712-1/1, 436 KIR 113/2/0-1]; Central-Asian Institute of Applied Geosciences (CAIAG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.