The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 4
Back to Result List

Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees

  • Many Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery. The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (similar to 70 km(2)) of the Isabena River in the Spanish Pyrenees in contrasting seasonsMany Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery. The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (similar to 70 km(2)) of the Isabena River in the Spanish Pyrenees in contrasting seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. Sediment connectivity was mapped using the index of connectivity, in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation (RUSLE) was used as a weighting factor. Bi-temporal C factor maps were derived by linking the spatially explicit fractional ground cover and vegetation height obtained from the airborne data to the variables of the RUSLE subfactors. The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover and on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in August as compared to April. The two subcatchments show a slightly different connectivity behaviour that reflects the different land cover proportions and their spatial configuration. The connectivity estimation can support a better understanding of processes controlling the redistribution of water and sediments from the hillslopes to the channel network at a scale appropriate for land management. It allows hot spot areas of erosion to be identified and the effects of erosion control measures, as well as different land management scenarios, to be studied.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Saskia FörsterORCiDGND, Charlotte Wilczok, Arlena BrosinskyORCiDGND, Karl Segl
DOI:https://doi.org/10.1007/s11368-014-0992-3
ISSN:1439-0108
ISSN:1614-7480
Title of parent work (English):Journal of soils and sediments : protection, risk assessment and remediation
Publisher:Springer
Place of publishing:Heidelberg
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Fractional cover; Imaging spectroscopy; Index of connectivity; North-eastern Spain; Sediment connectivity; Spectral unmixing
Volume:14
Issue:12
Number of pages:19
First page:1982
Last Page:2000
Funding institution:Deutsche Forschungsgemeinschaft (DFG); Federal Ministry of Economics and Technology (BMWi) [50EE0946]; EUFAR Transnational Access; BMWi
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.