The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 3
Back to Result List

Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply a study on three freshwater species

  • The understanding of environmentally induced changes in the biochemical composition of phytoplankton species is of great importance in both physiological studies and ecological food web research. In extensive laboratory experiments we tested the influence of two different temperatures (10 degrees C and 25 degrees C) and a phosphorus supply gradient on the sterol concentrations of the three freshwater phytoplankton species Scenedesmus quadricauda, Cryptomonas ovata and Cyclotella meneghiniana. The diatom C. meneghiniana was additionally exposed to a silicate gradient. In two separate experiments we analysed (1) possible interactive effects of temperature and phosphorus supply and (2) the effect of four phosphorus levels and three silicate levels on algal sterol concentrations. We observed that sterol concentrations were higher at 25 degrees C than at 10 degrees C in S. quadricauda and C. meneghiniana, but were not affected by temperature in C. ovata. Interactive effects of temperature and phosphorus supply on sterol concentrations wereThe understanding of environmentally induced changes in the biochemical composition of phytoplankton species is of great importance in both physiological studies and ecological food web research. In extensive laboratory experiments we tested the influence of two different temperatures (10 degrees C and 25 degrees C) and a phosphorus supply gradient on the sterol concentrations of the three freshwater phytoplankton species Scenedesmus quadricauda, Cryptomonas ovata and Cyclotella meneghiniana. The diatom C. meneghiniana was additionally exposed to a silicate gradient. In two separate experiments we analysed (1) possible interactive effects of temperature and phosphorus supply and (2) the effect of four phosphorus levels and three silicate levels on algal sterol concentrations. We observed that sterol concentrations were higher at 25 degrees C than at 10 degrees C in S. quadricauda and C. meneghiniana, but were not affected by temperature in C. ovata. Interactive effects of temperature and phosphorus supply on sterol concentrations were found in C. meneghiniana. This presumably was due to the bioconversion of one sterol (24-methylenecholesterol) into another (22-dihydrobrassicasterol). Increasing phosphorus supply resulted in species-specific effects on sterol concentrations, viz. an optimum curve response in S. quadricauda, a saturation curve response in C. meneghiniana and no change in sterol concentration in C. ovata. Effects of silicate supply on the sterols of C. meneghiniana equalled the effects of phosphorus supply. Albeit we did not observe a general trend in the three phytoplankton species tested, we conclude that sterol concentrations of phytoplankton are strongly affected by temperature and nutrient supply. Interactive effects point out the importance of taking into account more than just one environmental factor when assessing the effects of environmentally induced changes on phytoplankton sterol concentrations.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maike Piepho, Dominik Martin-CreuzburgORCiDGND, Alexander WackerORCiDGND
DOI:https://doi.org/10.1080/09670262.2012.665484
ISSN:0967-0262
Title of parent work (English):European journal of phycology
Publisher:Routledge, Taylor & Francis Group
Place of publishing:Abingdon
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Chlorophyta; Cryptomonas; Cryptophyta; Cyclotella; Scenedesmus; algae; diatoms; phosphorus; silicate; sterols; temperature
Volume:47
Issue:2
Number of pages:8
First page:138
Last Page:145
Funding institution:German Research Foundation [DFG WA 2445/4-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.