• search hit 1 of 1
Back to Result List

The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations

  • The CO2 acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO2 condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO2-uptake rate by photosynthesis (V-max; O-2), half saturation constant for CO2 uptake (K-0.5), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO2 grown algae, but maximum Q(p) was 6-fold higher in the low CO2 cells. In high CO2 conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO2-limited cells, but P- and CO2-colimited cells had a low CCF. High CCF did not relate with a low K-0.5 as all CO2-limited cells had a low K-0.5 (<4 mu M CO2). High Ci-pools in cells with high Qp suggested the presence of an active CO2-uptake mechanism. The CCF also increased with increasing V-max; O-2 which reflect an adaptation to the nutrient in highestThe CO2 acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO2 condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO2-uptake rate by photosynthesis (V-max; O-2), half saturation constant for CO2 uptake (K-0.5), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO2 grown algae, but maximum Q(p) was 6-fold higher in the low CO2 cells. In high CO2 conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO2-limited cells, but P- and CO2-colimited cells had a low CCF. High CCF did not relate with a low K-0.5 as all CO2-limited cells had a low K-0.5 (<4 mu M CO2). High Ci-pools in cells with high Qp suggested the presence of an active CO2-uptake mechanism. The CCF also increased with increasing V-max; O-2 which reflect an adaptation to the nutrient in highest demand (CO2) under balanced growth conditions. It is proposed that the size of the CCF in C. acidophila is more strongly related to porter density for CO2 uptake (reflected in V-max; O-2) and less- to high-affinity CO2 uptake (low K-0.5) at balanced growth. In addition, high CCF can only be realized with high Q(p).show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elly SpijkermanORCiD
DOI:https://doi.org/10.1007/s11120-010-9607-z
ISSN:0166-8595
Title of parent work (English):Photosynthesis research
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:C3 photosynthesis; Carbon concentrating mechanism; Iron toxicity; Micro-algae; Phosphorus limitation
Volume:109
Issue:1-3
Number of pages:11
First page:179
Last Page:189
Funding institution:German science foundation (DFG) [SP695/4-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.