• search hit 1 of 1
Back to Result List

Long term shift of low flows predictors in small lowland catchments of Northeast Germany

  • Runoff, especially during summer months, and low flows have decreased in Central and Eastern Europe during the last decades. A detailed knowledge on predictors and dependencies between meteorological forcing, catchment properties and low flow is necessary to optimize regional adaption strategies to sustain minimum runoff. The objective of this study is to identify low flow predictors for 16 small catchments in Northeast Germany and their long-term shifts between 1965 and 2006. Non-linear regression models (support vector machine regression) were calibrated to iteratively select the most powerful low flow predictors regarding annual 30-day minimum flow (AM(30)). The data set consists of standardized precipitation (SPI) and potential evapotranspiration (SpETI) indices on different time scales and lag times. The potential evapotranspiration of the previous 48 and 3 months, as well as the precipitation of the previous 3 months and last year were the most relevant predictors for AM(30). Pearson correlation (r(2)) of the final model is 0.49Runoff, especially during summer months, and low flows have decreased in Central and Eastern Europe during the last decades. A detailed knowledge on predictors and dependencies between meteorological forcing, catchment properties and low flow is necessary to optimize regional adaption strategies to sustain minimum runoff. The objective of this study is to identify low flow predictors for 16 small catchments in Northeast Germany and their long-term shifts between 1965 and 2006. Non-linear regression models (support vector machine regression) were calibrated to iteratively select the most powerful low flow predictors regarding annual 30-day minimum flow (AM(30)). The data set consists of standardized precipitation (SPI) and potential evapotranspiration (SpETI) indices on different time scales and lag times. The potential evapotranspiration of the previous 48 and 3 months, as well as the precipitation of the previous 3 months and last year were the most relevant predictors for AM(30). Pearson correlation (r(2)) of the final model is 0.49 and if for every year the results for all catchments are averaged r(2) increases to 0.80 because extremes are smoothing out. Evapotranspiration was the most important low flow predictor for the study period. However, distinct long-term shifts in the predictive power of variables became apparent. The potential evapotranspiration of the previous 48 months explained most of the variance, but its relevance decreased during the last decades. The importance of precipitation variables increased with time. Model performance was higher at catchments with a more damped discharge behavior. The results indicate changes in the relevant processes or flow paths generating low flows. The identified predictors, temporal patterns and patterns between catchments will support the development of low flow monitoring systems and determine those catchments where adaption measures should aim more at increasing groundwater recharge. (C) 2014 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Björn Thomas, Gunnar LischeidORCiDGND, Jörg Steidl, Ottfried Dietrich
DOI:https://doi.org/10.1016/j.jhydrol.2014.12.022
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Annual 30-day minimum flow; Catchment classification; Low flow indicator; Post-glacial landscape; Standardized precipitation index; Support vector machine regression
Volume:521
Number of pages:12
First page:508
Last Page:519
Funding institution:Federal Ministry of Education and Research of Germany (BMBF) [FKZ: 01LR0803A]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.