• search hit 1 of 1
Back to Result List

Crop type mapping using spectral-temporal profiles and phenological information

  • Spatially explicit multi-year crop information is required for many environmental applications. The study presented here proposes a hierarchical classification approach for per-plot crop type identification that is based on spectral-temporal profiles and accounts for deviations from the average growth stage timings by incorporating agro-meteorological information in the classification process. It is based on the fact that each crop type has a distinct seasonal spectral behavior and that the weather may accelerate or delay crop development. The classification approach was applied to map 12 crop types in a 14,000 km(2) catchment area in Northeast Germany for several consecutive years. An accuracy assessment was performed and compared to those of a maximum likelihood classification. The 7.1% lower overall classification accuracy of the spectral-temporal profiles approach may be justified by its independence of ground truth data. The results suggest that the number and timing of image acquisition is crucial to distinguish crop types. TheSpatially explicit multi-year crop information is required for many environmental applications. The study presented here proposes a hierarchical classification approach for per-plot crop type identification that is based on spectral-temporal profiles and accounts for deviations from the average growth stage timings by incorporating agro-meteorological information in the classification process. It is based on the fact that each crop type has a distinct seasonal spectral behavior and that the weather may accelerate or delay crop development. The classification approach was applied to map 12 crop types in a 14,000 km(2) catchment area in Northeast Germany for several consecutive years. An accuracy assessment was performed and compared to those of a maximum likelihood classification. The 7.1% lower overall classification accuracy of the spectral-temporal profiles approach may be justified by its independence of ground truth data. The results suggest that the number and timing of image acquisition is crucial to distinguish crop types. The increasing availability of optical imagery offering a high temporal coverage and a spatial resolution suitable for per-plot crop type mapping will facilitate the continuous refining of the spectral-temporal profiles for common crop types and different agro-regions and is expected to improve the classification accuracy of crop type maps using these profiles.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Saskia FörsterORCiDGND, Klaus KadenGND, Michael Förster, Sibylle ItzerottGND
DOI:https://doi.org/10.1016/j.compag.2012.07.015
ISSN:0168-1699
Title of parent work (English):Computers and electronics in agriculture
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Agro-meteorological data; Crop type mapping; Multi-temporal; NDVI temporal profiles; Phenological correction
Volume:89
Issue:32
Number of pages:11
First page:30
Last Page:40
Funding institution:German Federal Ministry of Education and Research [0330227]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.