The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 1664
Back to Result List

Detrital zircon provenance comparison between the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins: New insights for Cenozoic paleogeographic evolution of the eastern Tibetan Plateau

  • Paleogeographic reconstructions of terranes can greatly benefit from the provenance analysis of sediments. A series of Cenozoic basins provide key sedimentary archives for investigating the growth of the Tibetan Plateau, yet the provenance of the sediments in these basins has never been constrained robustly. Here we report sedimentary petrological and detrital zircon geochronological data from the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins. Sandstone detrital modes and zircon morphology suggest that the samples collected in these two basins were sourced from recycled orogen. Detrital zircon geochronology indicates that sediments in the Nangqian-Xialaxiu Basin are characterized by two distinct age populations at 220-280 Ma and 405-445 Ma. In contrast, three predominant age populations of 207-256 Ma, 423-445 Ma, and 1851-1868 Ma, and two subordinate age populations of similar to 50 Ma and similar to 2500 Ma, are recognized in the Gongjue Basin. Comparison with detrital zircon ages from the surrounding terranes suggests thatPaleogeographic reconstructions of terranes can greatly benefit from the provenance analysis of sediments. A series of Cenozoic basins provide key sedimentary archives for investigating the growth of the Tibetan Plateau, yet the provenance of the sediments in these basins has never been constrained robustly. Here we report sedimentary petrological and detrital zircon geochronological data from the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins. Sandstone detrital modes and zircon morphology suggest that the samples collected in these two basins were sourced from recycled orogen. Detrital zircon geochronology indicates that sediments in the Nangqian-Xialaxiu Basin are characterized by two distinct age populations at 220-280 Ma and 405-445 Ma. In contrast, three predominant age populations of 207-256 Ma, 423-445 Ma, and 1851-1868 Ma, and two subordinate age populations of similar to 50 Ma and similar to 2500 Ma, are recognized in the Gongjue Basin. Comparison with detrital zircon ages from the surrounding terranes suggests that sediments in the Nangqian-Xialaxiu Basin come from the neighboring thrust belts, whereas sediments from the Gongjue Basin are predominantly derived from the distant Songpan-Ganzi Terrane with minor contribution from the surrounding areas. A three-stage Cenozoic evolution of the eastern Tibetan Plateau is proposed. During the Paleocene, the Nangqian-Xialaxiu Basin appeared as a set of small intermontane sub-basins and received plentiful sediments from the neighboring mountain belts; during the Eocene, the Gongjue Basin kept a relatively low altitude and was a depression at the edge of a proto-Plateau; since the Oligocene, the Tibetan Plateau further uplifted and the marginal Gongjue Basin was involved in the Tibetan interior orogeny, indicating the eastward propagation of the Tibetan Plateau.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yang Zhang, Wentao Huang, Yuanyuan Zhang, Marc Poujol, Stephane GuillotORCiDGND, Pierrick RoperchORCiD, Guillaume Dupont-NivetORCiD, Zhaojie GuoORCiD
DOI:https://doi.org/10.1016/j.palaeo.2019.109241
ISSN:0031-0182
ISSN:1872-616X
Title of parent work (English):Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/23
Tag:Cenozoic basins; Eastern Tibetan Plateau; Sandstone detrital modes; Tectonic reconstruction; U-Pb geochronology
Volume:533
Number of pages:19
Funding institution:National Science and Technology Major Project [2017ZX05008001]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.