• Treffer 1 von 1
Zurück zur Trefferliste

Sensors based on cytochrome P450 and CYP mimicking systems

  • Cytochrome P450 enzymes (CYPs) act on more than 90 percent of all drugs currently on the market. The catalytic cycle requires electron supply to the heme iron in the presence of oxygen. Electrochemistry allows to characterise the reaction mechanism of these redox enzymes by observing the electron transfer in real time. According to the number of publications on protein electrochemistry CYP has the third position after glucose oxidase and cytochrome c. CYP based enzyme electrodes for the quantification of drugs, metabolites or pesticides have been developed using different iso-enzymes. A crucial step in the sensor development is the efficiency of coupling the biocatalytic systems with the electrode is. In the 1970s the direct electron transfer of heme and heme peptides called microperoxidases (MPs) was used as model of oxidoreductases. They exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of P450 making heme andCytochrome P450 enzymes (CYPs) act on more than 90 percent of all drugs currently on the market. The catalytic cycle requires electron supply to the heme iron in the presence of oxygen. Electrochemistry allows to characterise the reaction mechanism of these redox enzymes by observing the electron transfer in real time. According to the number of publications on protein electrochemistry CYP has the third position after glucose oxidase and cytochrome c. CYP based enzyme electrodes for the quantification of drugs, metabolites or pesticides have been developed using different iso-enzymes. A crucial step in the sensor development is the efficiency of coupling the biocatalytic systems with the electrode is. In the 1970s the direct electron transfer of heme and heme peptides called microperoxidases (MPs) was used as model of oxidoreductases. They exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of P450 making heme and MPs to alternate recognition elements in biosensors for the detection of typical CYP substrates. In these enzyme electrodes the signal is generated by the conversion of all substrates thus representing in complex media an overall parameter. By combining the biocatalytic substrate conversion with selective binding to a molecularly imprinted polymer layer the specificity has been improved. Here we discuss different approaches of biosensors based on CYP, microperoxidases and catalytically active MIPs and discuss their potential as recognition elements in biosensors. The performance of these sensors and their further development are discussed. (C) 2013 Elsevier Ltd. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Aysu YarmanORCiDGND, Ursula WollenbergerORCiDGND, Frieder W. SchellerORCiDGND
DOI:https://doi.org/10.1016/j.electacta.2013.03.154
ISSN:0013-4686
ISSN:1873-3859
Titel des übergeordneten Werks (Englisch):ELECTROCHIMICA ACTA
Verlag:PERGAMON-ELSEVIER SCIENCE LTD
Verlagsort:OXFORD
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2013
Erscheinungsjahr:2013
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Biosensors; Catalytically active molecularly imprinted polymers; Cytochrome P450; Microperoxidases; Personalised medicine
Band:110
Seitenanzahl:10
Erste Seite:63
Letzte Seite:72
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG) within the framework of the German Excellence Initiative [EXC 314]
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.