The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 29923
Back to Result List

Experimental and theoretical study on amoeboid cell-cargo active motion

  • As society paves its way towards device miniaturization and precision medicine, micro-scale actuation and guided transport become increasingly prominent research fields, with high potential impact in both technological and clinical contexts. In order to accomplish directed motion of micron-sized objects, as biosensors and drug-releasing microparticles, towards specific target sites, a promising strategy is the use of living cells as smart biochemically-powered carriers, building the so-called bio-hybrid systems. Inspired by leukocytes, native cells of living organisms efficiently migrating to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid crawling motility of such cells as mean of transport for drug delivery applications. In the research work described in this thesis, I synergistically applied experimental, computational and theoretical modeling approaches to investigate the behaviour and transport mechanism of a novel kind of bio-hybrid system for active transport at the micro-scale, referred to asAs society paves its way towards device miniaturization and precision medicine, micro-scale actuation and guided transport become increasingly prominent research fields, with high potential impact in both technological and clinical contexts. In order to accomplish directed motion of micron-sized objects, as biosensors and drug-releasing microparticles, towards specific target sites, a promising strategy is the use of living cells as smart biochemically-powered carriers, building the so-called bio-hybrid systems. Inspired by leukocytes, native cells of living organisms efficiently migrating to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid crawling motility of such cells as mean of transport for drug delivery applications. In the research work described in this thesis, I synergistically applied experimental, computational and theoretical modeling approaches to investigate the behaviour and transport mechanism of a novel kind of bio-hybrid system for active transport at the micro-scale, referred to as cellular truck. This system consists of an amoeboid crawling cell, the carrier, attached to a microparticle, the cargo, which may ideally be drug-loaded for specific therapeutic treatments. For the purposes of experimental investigation, I employed the amoeba Dictyostelium discoideum as crawling cellular carrier, being a renowned model organism for leukocyte migration and, in general, for eukaryotic cell motility. The performed experiments revealed a complex recurrent cell-cargo relative motion, together with an intermittent motility of the cellular truck as a whole. The evidence suggests the presence of cargoes on amoeboid cells to act as mechanical stimulus leading cell polarization, thus promoting cell motility and giving rise to the observed intermittent dynamics of the truck. Particularly, bursts in cytoskeletal polarity along the cell-cargo axis have been found to occur in time with a rate dependent on cargo geometrical features, as particle diameter. Overall, the collected experimental evidence pointed out a pivotal role of cell-cargo interactions in the emergent cellular truck motion dynamics. Especially, they can determine the transport capabilities of amoeboid cells, as the cargo size significantly impacts the cytoskeletal activity and repolarization dynamics along the cell-cargo axis, the latter responsible for truck displacement and reorientation. Furthermore, I developed a modeling framework, built upon the experimental evidence on cellular truck behaviour, that connects the relative dynamics and interactions arising at the truck scale with the actual particle transport dynamics. In fact, numerical simulations of the proposed model successfully reproduced the phenomenology of the cell-cargo system, while enabling the prediction of the transport properties of cellular trucks over larger spatial and temporal scales. The theoretical analysis provided a deeper understanding of the role of cell-cargo interaction on mass transport, unveiling in particular how the long-time transport efficiency is governed by the interplay between the persistence time of cell polarity and time scales of the relative dynamics stemming from cell-cargo interaction. Interestingly, the model predicts the existence of an optimal cargo size, enhancing the diffusivity of cellular trucks; this is in line with previous independent experimental data, which appeared rather counterintuitive and had no explanation prior to this study. In conclusion, my research work shed light on the importance of cargo-carrier interactions in the context of crawling cell-mediated particle transport, and provides a prototypical, multifaceted framework for the analysis and modelling of such complex bio-hybrid systems and their perspective optimization.show moreshow less
  • Im Zuge der fortschreitenden gesellschaftlichen Entwicklung hin zur Miniaturisierung und Präzisionsmedizin, gewinnen Fragen zu Antrieb und zielgerichtetem Transport auf der Mikrometerskala zunehmend an Bedeutung, nicht zuletzt wegen ihres kaum zu unterschätzendem Potentials für Medizin und Technik. Eine vielversprechende Strategie, um den zielgerichteten Transport von Objekten auf der Mikrometerskala, wie zum Beispiel Biosensoren oder mit Medikamenten beladene Mikropartikel, zu bewerkstelligen, ist die Verwendung von lebenden Zellen als intelligenten, biochemisch angetriebenen Transportern. Zellen und Mikroobjekte bilden dabei gemeinsam sogenannte Bio-Hybridsysteme. Inspiriert von Leukozyten - nativen Zellen lebender Organismen, welche sich effizient zu kritischen Zielen, wie Tumorgewebe, bewegen - besteht ein neues Konzept darin, die amöboide Fortbewegung solcher Zellen für den Medikamententransport zu nutzen. Im Rahmen dieser Doktorarbeit kamen experimentelle, numerische und theoretische Modellierungsansätze zum Einsatz, um dieIm Zuge der fortschreitenden gesellschaftlichen Entwicklung hin zur Miniaturisierung und Präzisionsmedizin, gewinnen Fragen zu Antrieb und zielgerichtetem Transport auf der Mikrometerskala zunehmend an Bedeutung, nicht zuletzt wegen ihres kaum zu unterschätzendem Potentials für Medizin und Technik. Eine vielversprechende Strategie, um den zielgerichteten Transport von Objekten auf der Mikrometerskala, wie zum Beispiel Biosensoren oder mit Medikamenten beladene Mikropartikel, zu bewerkstelligen, ist die Verwendung von lebenden Zellen als intelligenten, biochemisch angetriebenen Transportern. Zellen und Mikroobjekte bilden dabei gemeinsam sogenannte Bio-Hybridsysteme. Inspiriert von Leukozyten - nativen Zellen lebender Organismen, welche sich effizient zu kritischen Zielen, wie Tumorgewebe, bewegen - besteht ein neues Konzept darin, die amöboide Fortbewegung solcher Zellen für den Medikamententransport zu nutzen. Im Rahmen dieser Doktorarbeit kamen experimentelle, numerische und theoretische Modellierungsansätze zum Einsatz, um die Eigenschaften und Transportmechanismen eines neuen Bio-Hybridsystems für den aktiven Transport von Objekten auf der Mikrometerskala zu untersuchen. Dieses Bio-Hybridsystem wird im Folgenden als Zelltransporter bezeichnet. Ein Zelltransporter besteht aus einer sich amöboid fortbewegenden Zelle, dem Transporter, und einem Mikropartikel, der Fracht, welche idealerweise mit Medikamenten für therapeutische Zwecke beladen sein kann. Für die experimentellen Untersuchungen wurde die Amöbe Dictyostelium discoideum als Transporter verwendet. Sie ist ein bekannter Modellorganismus für die Leukozytenmigration und für die Motilität eukaryotischer Zellen im Allgemeinem. Die durchgeführten Experimente zeigten eine komplexe, periodische Zell-Fracht-Relativbewegung, zusammen mit einer intermittierenden Motilität des gesamten Zelltransporters. Die experimentellen Beobachtungen weisen darauf hin, dass die Anwesenheit der Fracht als mechanischer Stimulus auf die amöboide Zelle wirkt und zur Zellpolarisation führt, was wiederum die Zellmotilität fördert und die intermittierende Dynamik des Zelltransportes begründet. So wurde festgestellt, dass das Auftreten der Polarisation des Zytoskeletts entlang der Zell-Fracht-Achse von den geometrischen Merkmalen der Fracht, wie zum Beispiel des Partikeldurchmessers, abhängt. Insgesamt wiesen die gesammelten experimentellen Daten auf eine zentrale Rolle der Zell-Fracht-Wechselwirkungen in der Bewegungsdynamik von Zelltransportern hin. Insbesondere kann die Zell-Fracht-Wechselwirkung die Transportfähigkeiten von amöboiden Zellen erheblich beeinflussen, da die Größe der Fracht die Aktivität des Zytoskeletts und die Repolarisationsdynamik entlang der Zell-Fracht-Achse modelliert, wobei letzteres für die Verlagerung und Neuorientierung des Zelltransportes verantwortlich ist. Darüber hinaus wurde eine Modellierung entwickelt, welche auf den experimentellen Erkenntnissen zum Verhalten der Zelltransporter aufbaut und die relative Dynamik auf Zelltranporterebene, mit der tatsächlichen Partikeltransportdynamik verbindet. Tatsächlich reproduzierten numerische Simulationen des vorgeschlagenen Modells erfolgreich die Phänomenologie des Zell-Fracht-Systems und ermöglichten gleichzeitig die Vorhersage der Transporteigenschaften von Zelltransportern über größere räumliche und zeitliche Skalen. Des Weiteren liefert die theoretische Analyse ein tieferes Verständnis der Rolle der Zell-Fracht-Wechselwirkung beim Massentransport und zeigte insbesondere, wie die Langzeittransporteffizienz durch das Zusammenspiel von Persistenzzeit der Zellpolarität und den Zeitskalen der relativen Dynamik, welche sich aus der Zell-Fracht-Interaktion ergeben, bestimmt wird. Interessanterweise sagt das Modell die Existenz einer optimalen Frachtgröße voraus, wodurch die Diffusivität von Zelltransportern maximiert wird. Dies steht im Einklang mit früheren, unabhängigen experimentellen Daten, für die es vor dieser Studie keine Erklärung gab. Zusammenfassend lässt sich sagen, dass die vorliegende Forschungsarbeit Licht auf die Bedeutung von Transporter-Fracht-Wechselwirkungen, beim Partikeltransports mittels amöboider Zellen, wirft und eine breite Grundlage für die Analyse und Modellierung komplexer Bio-Hybridsysteme und deren perspektivische Optimierung schafft.show moreshow less

Download full text files

  • SHA-512:20583cf9d5246ed639b4afc4b9977b86a8cc574b1e7e1ddfe6b1cc647bbd2df8b2cc895649595ede79349fa38fd6c50a11fcd51098b7fe78ea2701e6d7edecb6

Export metadata

Metadaten
Author details:Valentino LeproORCiD
URN:urn:nbn:de:kobv:517-opus4-490890
DOI:https://doi.org/10.25932/publishup-49089
Subtitle (English):a physical analysis of cell-mediated particle transport
Reviewer(s):Carsten BetaORCiDGND, Stefan KlumppORCiDGND, Klaus KroyORCiD
Supervisor(s):Carsten Beta, Stefan Klumpp
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/02/24
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/01/19
Release date:2021/02/24
Tag:Bio-Hybridsystem; Biophysik; Partikeltransport; aktiven Transport; amöboide Bewegung
active transport; amoeboid motion; bio-hybrid system; biophysics; particle transport
Number of pages:xx, 114
RVK - Regensburg classification:UM 3100, UF 4270, WD 2300
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
CCS classification:I. Computing Methodologies / I.4 IMAGE PROCESSING AND COMPUTER VISION (REVISED) / I.4.0 General
I. Computing Methodologies / I.6 SIMULATION AND MODELING (G.3) / I.6.0 General
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES / 92Cxx Physiological, cellular and medical topics / 92C05 Biophysics
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.